2715 lines
93 KiB
C
2715 lines
93 KiB
C
|
/**
|
||
|
******************************************************************************
|
||
|
* @file stm32l4xx_hal_rtc.c
|
||
|
* @author MCD Application Team
|
||
|
* @brief RTC HAL module driver.
|
||
|
* This file provides firmware functions to manage the following
|
||
|
* functionalities of the Real-Time Clock (RTC) peripheral:
|
||
|
* + Initialization/de-initialization functions
|
||
|
* + Calendar (Time and Date) configuration
|
||
|
* + Alarms (Alarm A and Alarm B) configuration
|
||
|
* + WakeUp Timer configuration
|
||
|
* + TimeStamp configuration
|
||
|
* + Tampers configuration
|
||
|
* + Backup Data Registers configuration
|
||
|
* + RTC Tamper and TimeStamp Pins Selection
|
||
|
* + Interrupts and flags management
|
||
|
*
|
||
|
******************************************************************************
|
||
|
* @attention
|
||
|
*
|
||
|
* Copyright (c) 2017 STMicroelectronics.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This software is licensed under terms that can be found in the LICENSE file
|
||
|
* in the root directory of this software component.
|
||
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||
|
*
|
||
|
******************************************************************************
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### RTC Operating Condition #####
|
||
|
===============================================================================
|
||
|
[..] The real-time clock (RTC) and the RTC backup registers can be powered
|
||
|
from the VBAT voltage when the main VDD supply is powered off.
|
||
|
To retain the content of the RTC backup registers and supply the RTC
|
||
|
when VDD is turned off, VBAT pin can be connected to an optional
|
||
|
standby voltage supplied by a battery or by another source.
|
||
|
|
||
|
##### Backup Domain Reset #####
|
||
|
===============================================================================
|
||
|
[..] The backup domain reset sets all RTC registers and the RCC_BDCR register
|
||
|
to their reset values.
|
||
|
A backup domain reset is generated when one of the following events occurs:
|
||
|
(#) Software reset, triggered by setting the BDRST bit in the
|
||
|
RCC Backup domain control register (RCC_BDCR).
|
||
|
(#) VDD or VBAT power on, if both supplies have previously been powered off.
|
||
|
(#) Tamper detection event resets all data backup registers.
|
||
|
|
||
|
##### Backup Domain Access #####
|
||
|
==================================================================
|
||
|
[..] After reset, the backup domain (RTC registers and RTC backup data registers)
|
||
|
is protected against possible unwanted write accesses.
|
||
|
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
|
||
|
(+) Enable the Power Controller (PWR) APB1 interface clock using the
|
||
|
__HAL_RCC_PWR_CLK_ENABLE() function.
|
||
|
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
|
||
|
(+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
|
||
|
(+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
|
||
|
|
||
|
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
|
||
|
(#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
|
||
|
PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
|
||
|
(#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
|
||
|
|
||
|
##### How to use RTC Driver #####
|
||
|
===================================================================
|
||
|
[..]
|
||
|
(+) Enable the RTC domain access (see description in the section above).
|
||
|
(+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
|
||
|
format using the HAL_RTC_Init() function.
|
||
|
|
||
|
*** Time and Date configuration ***
|
||
|
===================================
|
||
|
[..]
|
||
|
(+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
|
||
|
and HAL_RTC_SetDate() functions.
|
||
|
(+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
|
||
|
|
||
|
*** Alarm configuration ***
|
||
|
===========================
|
||
|
[..]
|
||
|
(+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
|
||
|
You can also configure the RTC Alarm with interrupt mode using the
|
||
|
HAL_RTC_SetAlarm_IT() function.
|
||
|
(+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
|
||
|
|
||
|
##### RTC and low power modes #####
|
||
|
==================================================================
|
||
|
[..] The MCU can be woken up from a low power mode by an RTC alternate
|
||
|
function.
|
||
|
[..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
|
||
|
RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
|
||
|
These RTC alternate functions can wake up the system from the Stop and
|
||
|
Standby low power modes.
|
||
|
[..] The system can also wake up from low power modes without depending
|
||
|
on an external interrupt (Auto-wakeup mode), by using the RTC alarm
|
||
|
or the RTC wakeup events.
|
||
|
[..] The RTC provides a programmable time base for waking up from the
|
||
|
Stop or Standby mode at regular intervals.
|
||
|
Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
|
||
|
is LSE or LSI.
|
||
|
|
||
|
*** Callback registration ***
|
||
|
=============================================
|
||
|
|
||
|
[..]
|
||
|
When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
|
||
|
not defined, the callback registration feature is not available and all callbacks
|
||
|
are set to the corresponding weak functions. This is the recommended configuration
|
||
|
in order to optimize memory/code consumption footprint/performances.
|
||
|
|
||
|
[..]
|
||
|
The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1
|
||
|
allows the user to configure dynamically the driver callbacks.
|
||
|
Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
|
||
|
|
||
|
[..]
|
||
|
Function HAL_RTC_RegisterCallback() allows to register following callbacks:
|
||
|
(+) AlarmAEventCallback : RTC Alarm A Event callback.
|
||
|
(+) AlarmBEventCallback : RTC Alarm B Event callback.
|
||
|
(+) TimeStampEventCallback : RTC TimeStamp Event callback.
|
||
|
(+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
(+) SSRUEventCallback : RTC SSRU Event callback.
|
||
|
#endif
|
||
|
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
|
||
|
(+) Tamper2EventCallback : RTC Tamper 2 Event callback.
|
||
|
(+) Tamper3EventCallback : RTC Tamper 3 Event callback.
|
||
|
(+) MspInitCallback : RTC MspInit callback.
|
||
|
(+) MspDeInitCallback : RTC MspDeInit callback.
|
||
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
||
|
and a pointer to the user callback function.
|
||
|
|
||
|
[..]
|
||
|
Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
|
||
|
weak function.
|
||
|
HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
||
|
and the Callback ID.
|
||
|
This function allows to reset following callbacks:
|
||
|
(+) AlarmAEventCallback : RTC Alarm A Event callback.
|
||
|
(+) AlarmBEventCallback : RTC Alarm B Event callback.
|
||
|
(+) TimeStampEventCallback : RTC TimeStamp Event callback.
|
||
|
(+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
(+) SSRUEventCallback : RTC SSRU Event callback.
|
||
|
#endif
|
||
|
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
|
||
|
(+) Tamper2EventCallback : RTC Tamper 2 Event callback.
|
||
|
(+) Tamper3EventCallback : RTC Tamper 3 Event callback.
|
||
|
(+) MspInitCallback : RTC MspInit callback.
|
||
|
(+) MspDeInitCallback : RTC MspDeInit callback.
|
||
|
|
||
|
[..]
|
||
|
By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
|
||
|
all callbacks are set to the corresponding weak functions :
|
||
|
examples AlarmAEventCallback(), TimeStampEventCallback().
|
||
|
Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
|
||
|
in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
|
||
|
(not registered beforehand).
|
||
|
If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
|
||
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
|
||
|
|
||
|
[..]
|
||
|
Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
|
||
|
Exception done MspInit/MspDeInit that can be registered/unregistered
|
||
|
in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
|
||
|
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
||
|
In that case first register the MspInit/MspDeInit user callbacks
|
||
|
using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
|
||
|
or HAL_RTC_Init() function.
|
||
|
|
||
|
[..]
|
||
|
When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
|
||
|
not defined, the callback registration feature is not available and all callbacks
|
||
|
are set to the corresponding weak functions.
|
||
|
|
||
|
@endverbatim
|
||
|
******************************************************************************
|
||
|
*/
|
||
|
|
||
|
/* Includes ------------------------------------------------------------------*/
|
||
|
#include "stm32l4xx_hal.h"
|
||
|
|
||
|
/** @addtogroup STM32L4xx_HAL_Driver
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
|
||
|
/** @addtogroup RTC
|
||
|
* @brief RTC HAL module driver
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
#ifdef HAL_RTC_MODULE_ENABLED
|
||
|
|
||
|
/* Private typedef -----------------------------------------------------------*/
|
||
|
/* Private define ------------------------------------------------------------*/
|
||
|
/* Private macro -------------------------------------------------------------*/
|
||
|
/* Private variables ---------------------------------------------------------*/
|
||
|
/* Private function prototypes -----------------------------------------------*/
|
||
|
/* Exported functions --------------------------------------------------------*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group1
|
||
|
* @brief Initialization and Configuration functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Initialization and de-initialization functions #####
|
||
|
===============================================================================
|
||
|
[..] This section provides functions allowing to initialize and configure the
|
||
|
RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
|
||
|
RTC registers Write protection, enter and exit the RTC initialization mode,
|
||
|
RTC registers synchronization check and reference clock detection enable.
|
||
|
(#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
|
||
|
It is split into 2 programmable prescalers to minimize power consumption.
|
||
|
(++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
|
||
|
(++) When both prescalers are used, it is recommended to configure the
|
||
|
asynchronous prescaler to a high value to minimize power consumption.
|
||
|
(#) All RTC registers are Write protected. Writing to the RTC registers
|
||
|
is enabled by writing a key into the Write Protection register, RTC_WPR.
|
||
|
(#) To configure the RTC Calendar, user application should enter
|
||
|
initialization mode. In this mode, the calendar counter is stopped
|
||
|
and its value can be updated. When the initialization sequence is
|
||
|
complete, the calendar restarts counting after 4 RTCCLK cycles.
|
||
|
(#) To read the calendar through the shadow registers after Calendar
|
||
|
initialization, calendar update or after wakeup from low power modes
|
||
|
the software must first clear the RSF flag. The software must then
|
||
|
wait until it is set again before reading the calendar, which means
|
||
|
that the calendar registers have been correctly copied into the
|
||
|
RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
|
||
|
implements the above software sequence (RSF clear and RSF check).
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Initialize the RTC peripheral
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_ERROR;
|
||
|
|
||
|
/* Check the RTC peripheral state */
|
||
|
if (hrtc != NULL)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
|
||
|
assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
|
||
|
assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
|
||
|
assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
|
||
|
assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
|
||
|
assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
|
||
|
assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
|
||
|
assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
|
||
|
#endif
|
||
|
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
|
||
|
assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
|
||
|
#endif
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
if (hrtc->State == HAL_RTC_STATE_RESET)
|
||
|
{
|
||
|
/* Allocate lock resource and initialize it */
|
||
|
hrtc->Lock = HAL_UNLOCKED;
|
||
|
hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
|
||
|
hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
|
||
|
hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
|
||
|
hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */
|
||
|
#endif
|
||
|
|
||
|
#if defined(RTC_TAMPER1_SUPPORT)
|
||
|
hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
|
||
|
#endif /* RTC_TAMPER1_SUPPORT */
|
||
|
hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
|
||
|
#if defined(RTC_TAMPER3_SUPPORT)
|
||
|
hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
|
||
|
#endif /* RTC_TAMPER3_SUPPORT */
|
||
|
|
||
|
if (hrtc->MspInitCallback == NULL)
|
||
|
{
|
||
|
hrtc->MspInitCallback = HAL_RTC_MspInit;
|
||
|
}
|
||
|
/* Init the low level hardware */
|
||
|
hrtc->MspInitCallback(hrtc);
|
||
|
|
||
|
if (hrtc->MspDeInitCallback == NULL)
|
||
|
{
|
||
|
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
|
||
|
}
|
||
|
}
|
||
|
#else /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
|
||
|
if (hrtc->State == HAL_RTC_STATE_RESET)
|
||
|
{
|
||
|
/* Allocate lock resource and initialize it */
|
||
|
hrtc->Lock = HAL_UNLOCKED;
|
||
|
|
||
|
/* Initialize RTC MSP */
|
||
|
HAL_RTC_MspInit(hrtc);
|
||
|
}
|
||
|
#endif /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
|
||
|
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Process TAMP ip offset from RTC one */
|
||
|
hrtc->TampOffset = (TAMP_BASE - RTC_BASE);
|
||
|
#endif
|
||
|
/* Set RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
/* Check whether the calendar needs to be initialized */
|
||
|
if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
|
||
|
{
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */
|
||
|
hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
|
||
|
#else
|
||
|
/* Clear RTC_CR FMT, OSEL and POL Bits */
|
||
|
hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL);
|
||
|
#endif
|
||
|
/* Set RTC_CR register */
|
||
|
hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
|
||
|
|
||
|
/* Configure the RTC PRER */
|
||
|
hrtc->Instance->PRER = (hrtc->Init.SynchPrediv);
|
||
|
hrtc->Instance->PRER |= (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
|
||
|
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Configure the Binary mode */
|
||
|
MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
|
||
|
hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
|
||
|
#else
|
||
|
hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP);
|
||
|
hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The calendar is already initialized */
|
||
|
status = HAL_OK;
|
||
|
}
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DeInitialize the RTC peripheral.
|
||
|
* @note This function does not reset the RTC Backup Data registers.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_ERROR;
|
||
|
|
||
|
/* Check the RTC peripheral state */
|
||
|
if (hrtc != NULL)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
|
||
|
|
||
|
/* Set RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
/* Reset all RTC CR register bits */
|
||
|
hrtc->Instance->TR = 0x00000000U;
|
||
|
hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
|
||
|
hrtc->Instance->CR &= 0x00000000U;
|
||
|
|
||
|
hrtc->Instance->WUTR = RTC_WUTR_WUT;
|
||
|
hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
|
||
|
hrtc->Instance->ALRMAR = 0x00000000U;
|
||
|
hrtc->Instance->ALRMBR = 0x00000000U;
|
||
|
hrtc->Instance->SHIFTR = 0x00000000U;
|
||
|
hrtc->Instance->CALR = 0x00000000U;
|
||
|
hrtc->Instance->ALRMASSR = 0x00000000U;
|
||
|
hrtc->Instance->ALRMBSSR = 0x00000000U;
|
||
|
|
||
|
/* Exit initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Reset TAMP registers */
|
||
|
((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR1 = 0xFFFF0000U;
|
||
|
((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR2 = 0x00000000U;
|
||
|
#else
|
||
|
/* Reset Tamper configuration register */
|
||
|
hrtc->Instance->TAMPCR = 0x00000000U;
|
||
|
|
||
|
/* Reset Option register */
|
||
|
hrtc->Instance->OR = 0x00000000U;
|
||
|
#endif
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
if (hrtc->MspDeInitCallback == NULL)
|
||
|
{
|
||
|
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
|
||
|
}
|
||
|
|
||
|
/* DeInit the low level hardware: CLOCK, NVIC.*/
|
||
|
hrtc->MspDeInitCallback(hrtc);
|
||
|
#else
|
||
|
/* De-Initialize RTC MSP */
|
||
|
HAL_RTC_MspDeInit(hrtc);
|
||
|
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_RESET;
|
||
|
|
||
|
/* Release Lock */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
/**
|
||
|
* @brief Register a User RTC Callback
|
||
|
* To be used instead of the weak predefined callback
|
||
|
* @param hrtc RTC handle
|
||
|
* @param CallbackID ID of the callback to be registered
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
|
||
|
* @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
|
||
|
* @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
|
||
|
* @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
|
||
|
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
|
||
|
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
|
||
|
* @param pCallback pointer to the Callback function
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
if (pCallback == NULL)
|
||
|
{
|
||
|
return HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
if (HAL_RTC_STATE_READY == hrtc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_RTC_ALARM_A_EVENT_CB_ID :
|
||
|
hrtc->AlarmAEventCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_ALARM_B_EVENT_CB_ID :
|
||
|
hrtc->AlarmBEventCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
|
||
|
hrtc->TimeStampEventCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
|
||
|
hrtc->WakeUpTimerEventCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
case HAL_RTC_SSRU_EVENT_CB_ID :
|
||
|
hrtc->SSRUEventCallback = pCallback;
|
||
|
break;
|
||
|
#endif
|
||
|
|
||
|
#if defined(RTC_TAMPER1_SUPPORT)
|
||
|
case HAL_RTC_TAMPER1_EVENT_CB_ID :
|
||
|
hrtc->Tamper1EventCallback = pCallback;
|
||
|
break;
|
||
|
#endif /* RTC_TAMPER1_SUPPORT */
|
||
|
|
||
|
case HAL_RTC_TAMPER2_EVENT_CB_ID :
|
||
|
hrtc->Tamper2EventCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
#if defined(RTC_TAMPER3_SUPPORT)
|
||
|
case HAL_RTC_TAMPER3_EVENT_CB_ID :
|
||
|
hrtc->Tamper3EventCallback = pCallback;
|
||
|
break;
|
||
|
#endif /* RTC_TAMPER3_SUPPORT */
|
||
|
|
||
|
case HAL_RTC_MSPINIT_CB_ID :
|
||
|
hrtc->MspInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_MSPDEINIT_CB_ID :
|
||
|
hrtc->MspDeInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (HAL_RTC_STATE_RESET == hrtc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_RTC_MSPINIT_CB_ID :
|
||
|
hrtc->MspInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_MSPDEINIT_CB_ID :
|
||
|
hrtc->MspDeInitCallback = pCallback;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Release Lock */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Unregister an RTC Callback
|
||
|
* RTC callback is redirected to the weak predefined callback
|
||
|
* @param hrtc RTC handle
|
||
|
* @param CallbackID ID of the callback to be unregistered
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
|
||
|
* @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
|
||
|
* @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
* @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Callback ID
|
||
|
#endif
|
||
|
* @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
|
||
|
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
|
||
|
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
|
||
|
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
/* Process locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
if (HAL_RTC_STATE_READY == hrtc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_RTC_ALARM_A_EVENT_CB_ID :
|
||
|
hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_ALARM_B_EVENT_CB_ID :
|
||
|
hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
|
||
|
hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
|
||
|
hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
|
||
|
break;
|
||
|
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
case HAL_RTC_SSRU_EVENT_CB_ID :
|
||
|
hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */
|
||
|
break;
|
||
|
#endif
|
||
|
|
||
|
#if defined(RTC_TAMPER1_SUPPORT)
|
||
|
case HAL_RTC_TAMPER1_EVENT_CB_ID :
|
||
|
hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
|
||
|
break;
|
||
|
#endif /* RTC_TAMPER1_SUPPORT */
|
||
|
|
||
|
case HAL_RTC_TAMPER2_EVENT_CB_ID :
|
||
|
hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
|
||
|
break;
|
||
|
|
||
|
#if defined(RTC_TAMPER3_SUPPORT)
|
||
|
case HAL_RTC_TAMPER3_EVENT_CB_ID :
|
||
|
hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
|
||
|
break;
|
||
|
#endif /* RTC_TAMPER3_SUPPORT */
|
||
|
|
||
|
case HAL_RTC_MSPINIT_CB_ID :
|
||
|
hrtc->MspInitCallback = HAL_RTC_MspInit;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_MSPDEINIT_CB_ID :
|
||
|
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else if (HAL_RTC_STATE_RESET == hrtc->State)
|
||
|
{
|
||
|
switch (CallbackID)
|
||
|
{
|
||
|
case HAL_RTC_MSPINIT_CB_ID :
|
||
|
hrtc->MspInitCallback = HAL_RTC_MspInit;
|
||
|
break;
|
||
|
|
||
|
case HAL_RTC_MSPDEINIT_CB_ID :
|
||
|
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
|
||
|
break;
|
||
|
|
||
|
default :
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Return error status */
|
||
|
status = HAL_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Release Lock */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
|
||
|
|
||
|
/**
|
||
|
* @brief Initialize the RTC MSP.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hrtc);
|
||
|
|
||
|
/* NOTE : This function should not be modified, when the callback is needed,
|
||
|
the HAL_RTC_MspInit could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief DeInitialize the RTC MSP.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hrtc);
|
||
|
|
||
|
/* NOTE : This function should not be modified, when the callback is needed,
|
||
|
the HAL_RTC_MspDeInit could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group2
|
||
|
* @brief RTC Time and Date functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### RTC Time and Date functions #####
|
||
|
===============================================================================
|
||
|
|
||
|
[..] This section provides functions allowing to configure Time and Date features
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
#if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/**
|
||
|
* @brief Set RTC current time.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sTime Pointer to Time structure
|
||
|
* if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically reset to 0xFFFFFFFF
|
||
|
else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the A 7-bit async prescaler (RTC_PRER_PREDIV_A)
|
||
|
* @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
|
||
|
* if Binary mode is RTC_BINARY_ONLY, this parameter is not used
|
||
|
* else this parameter can be one of the following values
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg;
|
||
|
HAL_StatusTypeDef status;
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
/* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
|
||
|
if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
|
||
|
assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
/* Check Binary mode ((32-bit free-running counter) */
|
||
|
if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
|
||
|
{
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sTime->Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sTime->TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sTime->Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sTime->Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sTime->Seconds));
|
||
|
|
||
|
tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
|
||
|
(((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sTime->TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
|
||
|
tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
|
||
|
((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
|
||
|
((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
|
||
|
((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
|
||
|
}
|
||
|
|
||
|
/* Set the RTC_TR register */
|
||
|
WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
|
||
|
|
||
|
/* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
|
||
|
CLEAR_BIT(RTC->CR, RTC_CR_BKP);
|
||
|
|
||
|
/* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
|
||
|
SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
}
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get RTC current time.
|
||
|
* @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
|
||
|
* value in second fraction ratio with time unit following generic formula:
|
||
|
* Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
|
||
|
* This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
|
||
|
* @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
||
|
* in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
||
|
* Reading RTC current time locks the values in calendar shadow registers until Current date is read
|
||
|
* to ensure consistency between the time and date values.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sTime
|
||
|
* if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
|
||
|
* else
|
||
|
* Pointer to Time structure with Hours, Minutes and Seconds fields returned
|
||
|
* with input format (BIN or BCD), also SubSeconds field returning the
|
||
|
* RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
|
||
|
* factor to be used for second fraction ratio computation.
|
||
|
* @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
|
||
|
* if Binary mode is RTC_BINARY_ONLY, this parameter is not used
|
||
|
* else this parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg;
|
||
|
|
||
|
UNUSED(hrtc);
|
||
|
/* Get subseconds structure field from the corresponding register*/
|
||
|
sTime->SubSeconds = READ_REG(RTC->SSR);
|
||
|
|
||
|
if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Get SecondFraction structure field from the corresponding register field*/
|
||
|
sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
|
||
|
|
||
|
/* Get the TR register */
|
||
|
tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
|
||
|
|
||
|
/* Fill the structure fields with the read parameters */
|
||
|
sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
|
||
|
sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
|
||
|
sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
|
||
|
sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
|
||
|
|
||
|
/* Check the input parameters format */
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
/* Convert the time structure parameters to Binary format */
|
||
|
sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
|
||
|
sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
|
||
|
sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Set RTC current date.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sDate Pointer to date structure
|
||
|
* @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
||
|
{
|
||
|
uint32_t datetmpreg;
|
||
|
HAL_StatusTypeDef status;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
|
||
|
{
|
||
|
sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
|
||
|
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
assert_param(IS_RTC_YEAR(sDate->Year));
|
||
|
assert_param(IS_RTC_MONTH(sDate->Month));
|
||
|
assert_param(IS_RTC_DATE(sDate->Date));
|
||
|
|
||
|
datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
|
||
|
((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
|
||
|
assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
|
||
|
assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
|
||
|
|
||
|
datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
|
||
|
(((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
|
||
|
(((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
|
||
|
(((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
|
||
|
}
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
/* Set the RTC_DR register */
|
||
|
WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_READY ;
|
||
|
}
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get RTC current date.
|
||
|
* @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
||
|
* in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
||
|
* Reading RTC current time locks the values in calendar shadow registers until Current date is read.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sDate Pointer to Date structure
|
||
|
* @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
||
|
{
|
||
|
uint32_t datetmpreg;
|
||
|
|
||
|
UNUSED(hrtc);
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Get the DR register */
|
||
|
datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
|
||
|
|
||
|
/* Fill the structure fields with the read parameters */
|
||
|
sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
|
||
|
sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
|
||
|
sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
|
||
|
sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
|
||
|
|
||
|
/* Check the input parameters format */
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
/* Convert the date structure parameters to Binary format */
|
||
|
sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
|
||
|
sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
|
||
|
sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
|
||
|
}
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group3
|
||
|
* @brief RTC Alarm functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### RTC Alarm functions #####
|
||
|
===============================================================================
|
||
|
|
||
|
[..] This section provides functions allowing to configure Alarm feature
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
/**
|
||
|
* @brief Set the specified RTC Alarm.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sAlarm Pointer to Alarm structure
|
||
|
* if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
|
||
|
* sAlarm->AlarmTime.SubSeconds
|
||
|
* sAlarm->AlarmSubSecondMask
|
||
|
* sAlarm->BinaryAutoClr
|
||
|
* @param Format of the entered parameters.
|
||
|
* if Binary mode is RTC_BINARY_ONLY, this parameter is not used
|
||
|
* else this parameter can be one of the following values
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg = 0, binaryMode;
|
||
|
|
||
|
__HAL_LOCK(hrtc);
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
/* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
|
||
|
if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
|
||
|
{
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
}
|
||
|
else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
|
||
|
}
|
||
|
else /* RTC_BINARY_MIX */
|
||
|
{
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
/* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
|
||
|
assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Get Binary mode (32-bit free-running counter configuration) */
|
||
|
binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
|
||
|
|
||
|
if (binaryMode != RTC_BINARY_ONLY)
|
||
|
{
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
||
|
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
else /* format BCD */
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Configure the Alarm register */
|
||
|
if (sAlarm->Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* Disable the Alarm A interrupt */
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
|
||
|
|
||
|
/* Clear flag alarm A */
|
||
|
WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
|
||
|
|
||
|
if (binaryMode == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMAR, tmpreg);
|
||
|
WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
|
||
|
}
|
||
|
|
||
|
WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
|
||
|
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
SET_BIT(RTC->CR, RTC_CR_ALRAE);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the Alarm B interrupt */
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
|
||
|
|
||
|
/* Clear flag alarm B */
|
||
|
WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
|
||
|
|
||
|
if (binaryMode == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMBR, tmpreg);
|
||
|
WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
|
||
|
}
|
||
|
|
||
|
WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
|
||
|
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
SET_BIT(RTC->CR, RTC_CR_ALRBE);
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
/* Change RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Set the specified RTC Alarm with Interrupt.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sAlarm Pointer to Alarm structure
|
||
|
* if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
|
||
|
* sAlarm->AlarmTime.SubSeconds
|
||
|
* sAlarm->AlarmSubSecondMask
|
||
|
* sAlarm->BinaryAutoClr
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* if Binary mode is RTC_BINARY_ONLY, this parameter is not used
|
||
|
* else this parameter can be one of the following values
|
||
|
* @arg RTC_FORMAT_BIN: Binary format
|
||
|
* @arg RTC_FORMAT_BCD: BCD format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg = 0, binaryMode;
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
/* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
|
||
|
if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
|
||
|
{
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
}
|
||
|
else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
|
||
|
}
|
||
|
else /* RTC_BINARY_MIX */
|
||
|
{
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
/* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
|
||
|
assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Get Binary mode (32-bit free-running counter configuration) */
|
||
|
binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
|
||
|
|
||
|
if (binaryMode != RTC_BINARY_ONLY)
|
||
|
{
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
||
|
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
else /* Format BCD */
|
||
|
{
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Configure the Alarm register */
|
||
|
if (sAlarm->Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* Disable the Alarm A interrupt */
|
||
|
CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
|
||
|
/* Clear flag alarm A */
|
||
|
WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
|
||
|
|
||
|
if (binaryMode == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMAR, tmpreg);
|
||
|
WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
|
||
|
}
|
||
|
|
||
|
WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
|
||
|
|
||
|
/* Configure the Alarm interrupt */
|
||
|
SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the Alarm B interrupt */
|
||
|
CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
|
||
|
/* Clear flag alarm B */
|
||
|
WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
|
||
|
|
||
|
if (binaryMode == RTC_BINARY_ONLY)
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
WRITE_REG(RTC->ALRMBR, tmpreg);
|
||
|
WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
|
||
|
}
|
||
|
|
||
|
WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
|
||
|
|
||
|
/* Configure the Alarm interrupt */
|
||
|
SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
|
||
|
}
|
||
|
|
||
|
/* RTC Alarm Interrupt Configuration: EXTI configuration */
|
||
|
__HAL_RTC_ALARM_EXTI_ENABLE_IT();
|
||
|
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
#else /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
|
||
|
/**
|
||
|
* @brief Set RTC current time.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sTime Pointer to Time structure
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg;
|
||
|
HAL_StatusTypeDef status;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
|
||
|
assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sTime->Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sTime->TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sTime->Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sTime->Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sTime->Seconds));
|
||
|
|
||
|
tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
|
||
|
(((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sTime->TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
|
||
|
tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
|
||
|
((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
|
||
|
((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
|
||
|
((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
|
||
|
}
|
||
|
|
||
|
/* Set the RTC_TR register */
|
||
|
hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
|
||
|
|
||
|
/* Clear the bits to be configured */
|
||
|
hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);
|
||
|
|
||
|
/* Configure the RTC_CR register */
|
||
|
hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
}
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get RTC current time.
|
||
|
* @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
|
||
|
* value in second fraction ratio with time unit following generic formula:
|
||
|
* Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
|
||
|
* This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
|
||
|
* @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
||
|
* in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
||
|
* Reading RTC current time locks the values in calendar shadow registers until Current date is read
|
||
|
* to ensure consistency between the time and date values.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
|
||
|
* with input format (BIN or BCD), also SubSeconds field returning the
|
||
|
* RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
|
||
|
* factor to be used for second fraction ratio computation.
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Get subseconds structure field from the corresponding register*/
|
||
|
sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
|
||
|
|
||
|
/* Get SecondFraction structure field from the corresponding register field*/
|
||
|
sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
|
||
|
|
||
|
/* Get the TR register */
|
||
|
tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
|
||
|
|
||
|
/* Fill the structure fields with the read parameters */
|
||
|
sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
|
||
|
sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
|
||
|
sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
|
||
|
sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
|
||
|
|
||
|
/* Check the input parameters format */
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
/* Convert the time structure parameters to Binary format */
|
||
|
sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
|
||
|
sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
|
||
|
sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
|
||
|
}
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Set RTC current date.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sDate Pointer to date structure
|
||
|
* @param Format specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
||
|
{
|
||
|
uint32_t datetmpreg;
|
||
|
HAL_StatusTypeDef status;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
|
||
|
{
|
||
|
sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
|
||
|
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
assert_param(IS_RTC_YEAR(sDate->Year));
|
||
|
assert_param(IS_RTC_MONTH(sDate->Month));
|
||
|
assert_param(IS_RTC_DATE(sDate->Date));
|
||
|
|
||
|
datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
|
||
|
((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
|
||
|
assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
|
||
|
assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
|
||
|
|
||
|
datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
|
||
|
(((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
|
||
|
(((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
|
||
|
(((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
|
||
|
}
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Enter Initialization mode */
|
||
|
status = RTC_EnterInitMode(hrtc);
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
/* Set the RTC_DR register */
|
||
|
hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
status = RTC_ExitInitMode(hrtc);
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
if (status == HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_READY ;
|
||
|
}
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get RTC current date.
|
||
|
* @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
||
|
* in the higher-order calendar shadow registers to ensure consistency between the time and date values.
|
||
|
* Reading RTC current time locks the values in calendar shadow registers until Current date is read.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sDate Pointer to Date structure
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
||
|
{
|
||
|
uint32_t datetmpreg;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
|
||
|
/* Get the DR register */
|
||
|
datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
|
||
|
|
||
|
/* Fill the structure fields with the read parameters */
|
||
|
sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
|
||
|
sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
|
||
|
sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
|
||
|
sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
|
||
|
|
||
|
/* Check the input parameters format */
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
/* Convert the date structure parameters to Binary format */
|
||
|
sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
|
||
|
sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
|
||
|
sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
|
||
|
}
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group3
|
||
|
* @brief RTC Alarm functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### RTC Alarm functions #####
|
||
|
===============================================================================
|
||
|
|
||
|
[..] This section provides functions allowing to configure Alarm feature
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
/**
|
||
|
* @brief Set the specified RTC Alarm.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sAlarm Pointer to Alarm structure
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg, subsecondtmpreg;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
||
|
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
|
||
|
/* Configure the Alarm A or Alarm B Sub Second registers */
|
||
|
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Configure the Alarm register */
|
||
|
if (sAlarm->Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* Disable the Alarm A interrupt */
|
||
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
||
|
/* Clear flag alarm A */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRAWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
||
|
/* Configure the Alarm A Sub Second register */
|
||
|
hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
__HAL_RTC_ALARMA_ENABLE(hrtc);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the Alarm B interrupt */
|
||
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
||
|
/* Clear flag alarm B */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRBWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
||
|
/* Configure the Alarm B Sub Second register */
|
||
|
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
__HAL_RTC_ALARMB_ENABLE(hrtc);
|
||
|
}
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
/* Change RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Set the specified RTC Alarm with Interrupt.
|
||
|
* @note The Alarm register can only be written when the corresponding Alarm
|
||
|
* is disabled (Use the HAL_RTC_DeactivateAlarm()).
|
||
|
* @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sAlarm Pointer to Alarm structure
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg, subsecondtmpreg;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
||
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
||
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
||
|
}
|
||
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
||
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
||
|
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
||
|
}
|
||
|
|
||
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
|
||
|
{
|
||
|
assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
||
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
||
|
}
|
||
|
|
||
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
||
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
||
|
|
||
|
#ifdef USE_FULL_ASSERT
|
||
|
if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
|
||
|
}
|
||
|
|
||
|
#endif /* USE_FULL_ASSERT */
|
||
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
|
||
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
|
||
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
||
|
((uint32_t)sAlarm->AlarmMask));
|
||
|
}
|
||
|
/* Configure the Alarm A or Alarm B Sub Second registers */
|
||
|
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
/* Configure the Alarm register */
|
||
|
if (sAlarm->Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* Disable the Alarm A interrupt */
|
||
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
||
|
|
||
|
/* Clear flag alarm A */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRAWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
||
|
/* Configure the Alarm A Sub Second register */
|
||
|
hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
__HAL_RTC_ALARMA_ENABLE(hrtc);
|
||
|
/* Configure the Alarm interrupt */
|
||
|
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Disable the Alarm B interrupt */
|
||
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
||
|
|
||
|
/* Clear flag alarm B */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRBWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
||
|
/* Configure the Alarm B Sub Second register */
|
||
|
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
||
|
/* Configure the Alarm state: Enable Alarm */
|
||
|
__HAL_RTC_ALARMB_ENABLE(hrtc);
|
||
|
/* Configure the Alarm interrupt */
|
||
|
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
|
||
|
}
|
||
|
|
||
|
/* RTC Alarm Interrupt Configuration: EXTI configuration */
|
||
|
__HAL_RTC_ALARM_EXTI_ENABLE_IT();
|
||
|
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
|
||
|
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
#endif /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
|
||
|
/**
|
||
|
* @brief Deactivate the specified RTC Alarm.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param Alarm Specifies the Alarm.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_ALARM_A: AlarmA
|
||
|
* @arg RTC_ALARM_B: AlarmB
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
|
||
|
{
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_ALARM(Alarm));
|
||
|
|
||
|
/* Process Locked */
|
||
|
__HAL_LOCK(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
||
|
|
||
|
/* Disable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
|
||
|
if (Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* AlarmA */
|
||
|
#if defined (RTC_ALRMASSR_SSCLR)
|
||
|
CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
|
||
|
#endif
|
||
|
|
||
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
||
|
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRAWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* AlarmB */
|
||
|
#if defined (RTC_ALRMBSSR_SSCLR)
|
||
|
CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMASSR_SSCLR);
|
||
|
#endif
|
||
|
|
||
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
||
|
|
||
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
||
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
|
||
|
|
||
|
#if defined (RTC_FLAG_ALRBWF)
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
/* Enable the write protection for RTC registers */
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
/* Process Unlocked */
|
||
|
__HAL_UNLOCK(hrtc);
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get the RTC Alarm value and masks.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param sAlarm Pointer to Date structure
|
||
|
* @param Alarm Specifies the Alarm.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_ALARM_A: AlarmA
|
||
|
* @arg RTC_ALARM_B: AlarmB
|
||
|
* @param Format Specifies the format of the entered parameters.
|
||
|
* This parameter can be one of the following values:
|
||
|
* @arg RTC_FORMAT_BIN: Binary data format
|
||
|
* @arg RTC_FORMAT_BCD: BCD data format
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
|
||
|
{
|
||
|
uint32_t tmpreg, subsecondtmpreg;
|
||
|
|
||
|
/* Check the parameters */
|
||
|
assert_param(IS_RTC_FORMAT(Format));
|
||
|
assert_param(IS_RTC_ALARM(Alarm));
|
||
|
|
||
|
if (Alarm == RTC_ALARM_A)
|
||
|
{
|
||
|
/* AlarmA */
|
||
|
sAlarm->Alarm = RTC_ALARM_A;
|
||
|
|
||
|
tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
|
||
|
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
|
||
|
|
||
|
/* Fill the structure with the read parameters */
|
||
|
sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
|
||
|
sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
|
||
|
sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
|
||
|
sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
|
||
|
sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
|
||
|
sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
|
||
|
sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
|
||
|
sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sAlarm->Alarm = RTC_ALARM_B;
|
||
|
|
||
|
tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
|
||
|
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
|
||
|
|
||
|
/* Fill the structure with the read parameters */
|
||
|
sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
|
||
|
sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
|
||
|
sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
|
||
|
sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
|
||
|
sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
|
||
|
sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
|
||
|
sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
|
||
|
sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
|
||
|
}
|
||
|
|
||
|
if (Format == RTC_FORMAT_BIN)
|
||
|
{
|
||
|
sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
||
|
sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
|
||
|
sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
|
||
|
sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
||
|
}
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Daylight Saving Time, Add one hour to the calendar in one single operation
|
||
|
* without going through the initialization procedure.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Daylight Saving Time, Subtract one hour from the calendar in one
|
||
|
* single operation without going through the initialization procedure.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Daylight Saving Time, Set the store operation bit.
|
||
|
* @note It can be used by the software in order to memorize the DST status.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Daylight Saving Time, Clear the store operation bit.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
||
|
CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
|
||
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Daylight Saving Time, Read the store operation bit.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval operation see RTC_StoreOperation_Definitions
|
||
|
*/
|
||
|
uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Handle Alarm interrupt request.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
/* Clear the EXTI's line Flag for RTC Alarm */
|
||
|
__HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
|
||
|
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Get interrupt status */
|
||
|
uint32_t tmp = hrtc->Instance->MISR;
|
||
|
|
||
|
if ((tmp & RTC_MISR_ALRAMF) != 0u)
|
||
|
{
|
||
|
/* Clear the AlarmA interrupt pending bit */
|
||
|
hrtc->Instance->SCR = RTC_SCR_CALRAF;
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
/* Call Compare Match registered Callback */
|
||
|
hrtc->AlarmAEventCallback(hrtc);
|
||
|
#else /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
|
||
|
HAL_RTC_AlarmAEventCallback(hrtc);
|
||
|
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
|
||
|
}
|
||
|
|
||
|
if ((tmp & RTC_MISR_ALRBMF) != 0u)
|
||
|
{
|
||
|
/* Clear the AlarmB interrupt pending bit */
|
||
|
hrtc->Instance->SCR = RTC_SCR_CALRBF;
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
/* Call Compare Match registered Callback */
|
||
|
hrtc->AlarmBEventCallback(hrtc);
|
||
|
#else
|
||
|
HAL_RTCEx_AlarmBEventCallback(hrtc);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
|
||
|
/* Get the AlarmA interrupt source enable status */
|
||
|
if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
|
||
|
{
|
||
|
/* Get the pending status of the AlarmA Interrupt */
|
||
|
if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
|
||
|
{
|
||
|
/* Clear the AlarmA interrupt pending bit */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
hrtc->AlarmAEventCallback(hrtc);
|
||
|
#else
|
||
|
HAL_RTC_AlarmAEventCallback(hrtc);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Get the AlarmB interrupt source enable status */
|
||
|
if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
|
||
|
{
|
||
|
/* Get the pending status of the AlarmB Interrupt */
|
||
|
if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
|
||
|
{
|
||
|
/* Clear the AlarmB interrupt pending bit */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
|
||
|
|
||
|
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
|
||
|
hrtc->AlarmBEventCallback(hrtc);
|
||
|
#else
|
||
|
HAL_RTCEx_AlarmBEventCallback(hrtc);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
#endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
|
||
|
/* Change RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Alarm A callback.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval None
|
||
|
*/
|
||
|
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
/* Prevent unused argument(s) compilation warning */
|
||
|
UNUSED(hrtc);
|
||
|
|
||
|
/* NOTE : This function should not be modified, when the callback is needed,
|
||
|
the HAL_RTC_AlarmAEventCallback could be implemented in the user file
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Handle AlarmA Polling request.
|
||
|
* @param hrtc RTC handle
|
||
|
* @param Timeout Timeout duration
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
|
||
|
{
|
||
|
|
||
|
uint32_t tickstart = HAL_GetTick();
|
||
|
|
||
|
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
|
||
|
{
|
||
|
if (Timeout != HAL_MAX_DELAY)
|
||
|
{
|
||
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Clear the Alarm interrupt pending bit */
|
||
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
||
|
|
||
|
/* Change RTC state */
|
||
|
hrtc->State = HAL_RTC_STATE_READY;
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group4
|
||
|
* @brief Peripheral Control functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Peripheral Control functions #####
|
||
|
===============================================================================
|
||
|
[..]
|
||
|
This subsection provides functions allowing to
|
||
|
(+) Wait for RTC Time and Date Synchronization
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
|
||
|
* synchronized with RTC APB clock.
|
||
|
* @note The RTC Resynchronization mode is write protected, use the
|
||
|
* __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
||
|
* @note To read the calendar through the shadow registers after Calendar
|
||
|
* initialization, calendar update or after wakeup from low power modes
|
||
|
* the software must first clear the RSF flag.
|
||
|
* The software must then wait until it is set again before reading
|
||
|
* the calendar, which means that the calendar registers have been
|
||
|
* correctly copied into the RTC_TR and RTC_DR shadow registers.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
uint32_t tickstart;
|
||
|
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx)
|
||
|
/* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
|
||
|
hrtc->Instance->ICSR = ((uint32_t)(RTC_RSF_MASK & RTC_ICSR_RESERVED_MASK));
|
||
|
#elif defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
/* Clear RSF flag (use a read-modify-write sequence to preserve the other read-write bits) */
|
||
|
hrtc->Instance->ICSR &= (uint32_t)RTC_RSF_MASK;
|
||
|
#else
|
||
|
/* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
|
||
|
hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
|
||
|
#endif
|
||
|
|
||
|
tickstart = HAL_GetTick();
|
||
|
|
||
|
/* Wait the registers to be synchronised */
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
|
||
|
#else
|
||
|
while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
|
||
|
#endif
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
return HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return HAL_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Exported_Functions_Group5
|
||
|
* @brief Peripheral State functions
|
||
|
*
|
||
|
@verbatim
|
||
|
===============================================================================
|
||
|
##### Peripheral State functions #####
|
||
|
===============================================================================
|
||
|
[..]
|
||
|
This subsection provides functions allowing to
|
||
|
(+) Get RTC state
|
||
|
|
||
|
@endverbatim
|
||
|
* @{
|
||
|
*/
|
||
|
/**
|
||
|
* @brief Return the RTC handle state.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL state
|
||
|
*/
|
||
|
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
/* Return RTC handle state */
|
||
|
return hrtc->State;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup RTC_Private_Functions
|
||
|
* @{
|
||
|
*/
|
||
|
/**
|
||
|
* @brief Enter the RTC Initialization mode.
|
||
|
* @note The RTC Initialization mode is write protected, use the
|
||
|
* __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
uint32_t tickstart;
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
/* Check if the Initialization mode is set */
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
|
||
|
if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
|
||
|
{
|
||
|
/* Set the Initialization mode */
|
||
|
SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);
|
||
|
|
||
|
tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC is in INIT state and if Time out is reached exit */
|
||
|
while ((READ_BIT(hrtc->Instance->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
status = HAL_TIMEOUT;
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U)
|
||
|
{
|
||
|
/* Set the Initialization mode */
|
||
|
hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
|
||
|
|
||
|
tickstart = HAL_GetTick();
|
||
|
/* Wait till RTC is in INIT state and if Time out is reached exit */
|
||
|
while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT))
|
||
|
{
|
||
|
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
|
||
|
{
|
||
|
status = HAL_TIMEOUT;
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Exit the RTC Initialization mode.
|
||
|
* @param hrtc RTC handle
|
||
|
* @retval HAL status
|
||
|
*/
|
||
|
HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
|
||
|
{
|
||
|
HAL_StatusTypeDef status = HAL_OK;
|
||
|
|
||
|
/* Exit Initialization mode */
|
||
|
#if defined(STM32L412xx) || defined(STM32L422xx) || defined(STM32L4P5xx) || defined(STM32L4Q5xx)
|
||
|
CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
|
||
|
#else
|
||
|
/* Exit Initialization mode */
|
||
|
CLEAR_BIT(RTC->ISR, RTC_ISR_INIT);
|
||
|
#endif
|
||
|
|
||
|
/* If CR_BYPSHAD bit = 0, wait for synchro */
|
||
|
if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
|
||
|
{
|
||
|
if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
status = HAL_TIMEOUT;
|
||
|
}
|
||
|
}
|
||
|
else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry */
|
||
|
{
|
||
|
/* Clear BYPSHAD bit */
|
||
|
CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
|
||
|
if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
||
|
{
|
||
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
||
|
status = HAL_TIMEOUT;
|
||
|
}
|
||
|
/* Restore BYPSHAD bit */
|
||
|
SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Convert a 2 digit decimal to BCD format.
|
||
|
* @param Value Byte to be converted
|
||
|
* @retval Converted byte
|
||
|
*/
|
||
|
uint8_t RTC_ByteToBcd2(uint8_t Value)
|
||
|
{
|
||
|
uint32_t bcdhigh = 0U;
|
||
|
uint8_t temp = Value;
|
||
|
|
||
|
while (temp >= 10U)
|
||
|
{
|
||
|
bcdhigh++;
|
||
|
temp -= 10U;
|
||
|
}
|
||
|
|
||
|
return ((uint8_t)(bcdhigh << 4U) | temp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Convert from 2 digit BCD to Binary.
|
||
|
* @param Value BCD value to be converted
|
||
|
* @retval Converted word
|
||
|
*/
|
||
|
uint8_t RTC_Bcd2ToByte(uint8_t Value)
|
||
|
{
|
||
|
uint8_t tmp;
|
||
|
tmp = ((Value & 0xF0U) >> 4U) * 10U;
|
||
|
return (tmp + (Value & 0x0FU));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
#endif /* HAL_RTC_MODULE_ENABLED */
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|