micro_climate/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_mmc.c

4617 lines
151 KiB
C
Raw Normal View History

2024-07-05 03:52:43 +00:00
/**
******************************************************************************
* @file stm32l4xx_hal_mmc.c
* @author MCD Application Team
* @brief MMC card HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Secure Digital (MMC) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + MMC card Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
This driver implements a high level communication layer for read and write from/to
this memory. The needed STM32 hardware resources (SDMMC and GPIO) are performed by
the user in HAL_MMC_MspInit() function (MSP layer).
Basically, the MSP layer configuration should be the same as we provide in the
examples.
You can easily tailor this configuration according to hardware resources.
[..]
This driver is a generic layered driver for SDMMC memories which uses the HAL
SDMMC driver functions to interface with MMC and eMMC cards devices.
It is used as follows:
(#)Initialize the SDMMC low level resources by implement the HAL_MMC_MspInit() API:
(##) Enable the SDMMC interface clock using __HAL_RCC_SDMMC_CLK_ENABLE();
(##) SDMMC pins configuration for MMC card
(+++) Enable the clock for the SDMMC GPIOs using the functions __HAL_RCC_GPIOx_CLK_ENABLE();
(+++) Configure these SDMMC pins as alternate function pull-up using HAL_GPIO_Init()
and according to your pin assignment;
(##) On STM32L4Rx/STM32L4Sxx devices, no DMA configuration is need, an internal DMA for SDMMC Peripheral is used.
(##) On other devices, perform DMA Configuration if you need to use DMA process (HAL_MMC_ReadBlocks_DMA()
and HAL_MMC_WriteBlocks_DMA() APIs).
(+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE();
(+++) Configure the DMA using the function HAL_DMA_Init() with predeclared and filled.
(##) NVIC configuration if you need to use interrupt process when using DMA transfer.
(+++) Configure the SDMMC and DMA interrupt priorities using function HAL_NVIC_SetPriority();
DMA priority is superior to SDMMC's priority
(+++) Enable the NVIC DMA and SDMMC IRQs using function HAL_NVIC_EnableIRQ()
(+++) SDMMC interrupts are managed using the macros __HAL_MMC_ENABLE_IT()
and __HAL_MMC_DISABLE_IT() inside the communication process.
(+++) SDMMC interrupts pending bits are managed using the macros __HAL_MMC_GET_IT()
and __HAL_MMC_CLEAR_IT()
(##) NVIC configuration if you need to use interrupt process (HAL_MMC_ReadBlocks_IT()
and HAL_MMC_WriteBlocks_IT() APIs).
(+++) Configure the SDMMC interrupt priorities using function HAL_NVIC_SetPriority();
(+++) Enable the NVIC SDMMC IRQs using function HAL_NVIC_EnableIRQ()
(+++) SDMMC interrupts are managed using the macros __HAL_MMC_ENABLE_IT()
and __HAL_MMC_DISABLE_IT() inside the communication process.
(+++) SDMMC interrupts pending bits are managed using the macros __HAL_MMC_GET_IT()
and __HAL_MMC_CLEAR_IT()
(#) At this stage, you can perform MMC read/write/erase operations after MMC card initialization
*** MMC Card Initialization and configuration ***
================================================
[..]
To initialize the MMC Card, use the HAL_MMC_Init() function. It Initializes
SDMMC Peripheral (STM32 side) and the MMC Card, and put it into StandBy State (Ready for data transfer).
This function provide the following operations:
(#) Initialize the SDMMC peripheral interface with defaullt configuration.
The initialization process is done at 400KHz. You can change or adapt
this frequency by adjusting the "ClockDiv" field.
The MMC Card frequency (SDMMC_CK) is computed as follows:
SDMMC_CK = SDMMCCLK / (2 * ClockDiv) on STM32L4Rx/STM32L4Sxx devices
SDMMC_CK = SDMMCCLK / (ClockDiv + 2) on other devices
In initialization mode and according to the MMC Card standard,
make sure that the SDMMC_CK frequency doesn't exceed 400KHz.
This phase of initialization is done through SDMMC_Init() and
SDMMC_PowerState_ON() SDMMC low level APIs.
(#) Initialize the MMC card. The API used is HAL_MMC_InitCard().
This phase allows the card initialization and identification
and check the MMC Card type (Standard Capacity or High Capacity)
The initialization flow is compatible with MMC standard.
This API (HAL_MMC_InitCard()) could be used also to reinitialize the card in case
of plug-off plug-in.
(#) Configure the MMC Card Data transfer frequency. By Default, the card transfer
frequency by adjusting the "ClockDiv" field.
In transfer mode and according to the MMC Card standard, make sure that the
SDMMC_CK frequency doesn't exceed 25MHz and 100MHz in High-speed mode switch.
(#) Select the corresponding MMC Card according to the address read with the step 2.
(#) Configure the MMC Card in wide bus mode: 4-bits data.
*** MMC Card Read operation ***
==============================
[..]
(+) You can read from MMC card in polling mode by using function HAL_MMC_ReadBlocks().
This function support only 512-bytes block length (the block size should be
chosen as 512 bytes).
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
(+) You can read from MMC card in DMA mode by using function HAL_MMC_ReadBlocks_DMA().
This function support only 512-bytes block length (the block size should be
chosen as 512 bytes).
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
You could also check the DMA transfer process through the MMC Rx interrupt event.
(+) You can read from MMC card in Interrupt mode by using function HAL_MMC_ReadBlocks_IT().
This function allows the read of 512 bytes blocks.
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
You could also check the IT transfer process through the MMC Rx interrupt event.
*** MMC Card Write operation ***
===============================
[..]
(+) You can write to MMC card in polling mode by using function HAL_MMC_WriteBlocks().
This function support only 512-bytes block length (the block size should be
chosen as 512 bytes).
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
(+) You can write to MMC card in DMA mode by using function HAL_MMC_WriteBlocks_DMA().
This function support only 512-bytes block length (the block size should be
chosen as 512 byte).
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
You could also check the DMA transfer process through the MMC Tx interrupt event.
(+) You can write to MMC card in Interrupt mode by using function HAL_MMC_WriteBlocks_IT().
This function allows the read of 512 bytes blocks.
You can choose either one block read operation or multiple block read operation
by adjusting the "NumberOfBlocks" parameter.
After this, you have to ensure that the transfer is done correctly. The check is done
through HAL_MMC_GetCardState() function for MMC card state.
You could also check the IT transfer process through the MMC Tx interrupt event.
*** MMC card information ***
===========================
[..]
(+) To get MMC card information, you can use the function HAL_MMC_GetCardInfo().
It returns useful information about the MMC card such as block size, card type,
block number ...
*** MMC card CSD register ***
============================
[..]
(+) The HAL_MMC_GetCardCSD() API allows to get the parameters of the CSD register.
Some of the CSD parameters are useful for card initialization and identification.
*** MMC card CID register ***
============================
[..]
(+) The HAL_MMC_GetCardCID() API allows to get the parameters of the CID register.
Some of the CID parameters are useful for card initialization and identification.
*** MMC HAL driver macros list ***
==================================
[..]
Below the list of most used macros in MMC HAL driver.
(+) __HAL_MMC_ENABLE : Enable the MMC device
(+) __HAL_MMC_DISABLE : Disable the MMC device
(+) __HAL_MMC_DMA_ENABLE: Enable the SDMMC DMA transfer
(+) __HAL_MMC_DMA_DISABLE: Disable the SDMMC DMA transfer
(+) __HAL_MMC_ENABLE_IT: Enable the MMC device interrupt
(+) __HAL_MMC_DISABLE_IT: Disable the MMC device interrupt
(+) __HAL_MMC_GET_FLAG:Check whether the specified MMC flag is set or not
(+) __HAL_MMC_CLEAR_FLAG: Clear the MMC's pending flags
[..]
(@) You can refer to the MMC HAL driver header file for more useful macros
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_MMC_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_MMC_RegisterCallback() to register a user callback,
it allows to register following callbacks:
(+) TxCpltCallback : callback when a transmission transfer is completed.
(+) RxCpltCallback : callback when a reception transfer is completed.
(+) ErrorCallback : callback when error occurs.
(+) AbortCpltCallback : callback when abort is completed.
(+) Read_DMADblBuf0CpltCallback : callback when the DMA reception of first buffer is completed.
(+) Read_DMADblBuf1CpltCallback : callback when the DMA reception of second buffer is completed.
(+) Write_DMADblBuf0CpltCallback : callback when the DMA transmission of first buffer is completed.
(+) Write_DMADblBuf1CpltCallback : callback when the DMA transmission of second buffer is completed.
(+) MspInitCallback : MMC MspInit.
(+) MspDeInitCallback : MMC MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function HAL_MMC_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
(+) TxCpltCallback : callback when a transmission transfer is completed.
(+) RxCpltCallback : callback when a reception transfer is completed.
(+) ErrorCallback : callback when error occurs.
(+) AbortCpltCallback : callback when abort is completed.
(+) Read_DMADblBuf0CpltCallback : callback when the DMA reception of first buffer is completed.
(+) Read_DMADblBuf1CpltCallback : callback when the DMA reception of second buffer is completed.
(+) Write_DMADblBuf0CpltCallback : callback when the DMA transmission of first buffer is completed.
(+) Write_DMADblBuf1CpltCallback : callback when the DMA transmission of second buffer is completed.
(+) MspInitCallback : MMC MspInit.
(+) MspDeInitCallback : MMC MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_MMC_Init and if the state is HAL_MMC_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_MMC_Init
and HAL_MMC_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_MMC_Init and HAL_MMC_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_MMC_RegisterCallback before calling HAL_MMC_DeInit
or HAL_MMC_Init function.
When The compilation define USE_HAL_MMC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
#ifdef HAL_MMC_MODULE_ENABLED
#if defined(SDMMC1)
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup MMC MMC
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup MMC_Private_Defines
* @{
*/
#if defined (VDD_VALUE) && (VDD_VALUE <= 1950U)
#define MMC_VOLTAGE_RANGE EMMC_LOW_VOLTAGE_RANGE
#define MMC_EXT_CSD_PWR_CL_26_INDEX 201
#define MMC_EXT_CSD_PWR_CL_52_INDEX 200
#define MMC_EXT_CSD_PWR_CL_DDR_52_INDEX 238
#define MMC_EXT_CSD_PWR_CL_26_POS 8
#define MMC_EXT_CSD_PWR_CL_52_POS 0
#define MMC_EXT_CSD_PWR_CL_DDR_52_POS 16
#else
#define MMC_VOLTAGE_RANGE EMMC_HIGH_VOLTAGE_RANGE
#define MMC_EXT_CSD_PWR_CL_26_INDEX 203
#define MMC_EXT_CSD_PWR_CL_52_INDEX 202
#define MMC_EXT_CSD_PWR_CL_DDR_52_INDEX 239
#define MMC_EXT_CSD_PWR_CL_26_POS 24
#define MMC_EXT_CSD_PWR_CL_52_POS 16
#define MMC_EXT_CSD_PWR_CL_DDR_52_POS 24
#endif
#define MMC_EXT_CSD_SLEEP_NOTIFICATION_TIME_INDEX 216
#define MMC_EXT_CSD_SLEEP_NOTIFICATION_TIME_POS 0
#define MMC_EXT_CSD_S_A_TIMEOUT_INDEX 217
#define MMC_EXT_CSD_S_A_TIMEOUT_POS 8
/* Frequencies used in the driver for clock divider calculation */
#define MMC_INIT_FREQ 400000U /* Initalization phase : 400 kHz max */
#define MMC_HIGH_SPEED_FREQ 52000000U /* High speed phase : 52 MHz max */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup MMC_Private_Functions MMC Private Functions
* @{
*/
static uint32_t MMC_InitCard(MMC_HandleTypeDef *hmmc);
static uint32_t MMC_PowerON(MMC_HandleTypeDef *hmmc);
static uint32_t MMC_SendStatus(MMC_HandleTypeDef *hmmc, uint32_t *pCardStatus);
static void MMC_PowerOFF(MMC_HandleTypeDef *hmmc);
static void MMC_Write_IT(MMC_HandleTypeDef *hmmc);
static void MMC_Read_IT(MMC_HandleTypeDef *hmmc);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
static void MMC_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void MMC_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void MMC_DMAError(DMA_HandleTypeDef *hdma);
static void MMC_DMATxAbort(DMA_HandleTypeDef *hdma);
static void MMC_DMARxAbort(DMA_HandleTypeDef *hdma);
#else
static uint32_t MMC_HighSpeed(MMC_HandleTypeDef *hmmc, FunctionalState state);
static uint32_t MMC_DDR_Mode(MMC_HandleTypeDef *hmmc, FunctionalState state);
#endif
static HAL_StatusTypeDef MMC_ReadExtCSD(MMC_HandleTypeDef *hmmc, uint32_t *pFieldData, uint16_t FieldIndex, uint32_t Timeout);
static uint32_t MMC_PwrClassUpdate(MMC_HandleTypeDef *hmmc, uint32_t Wide, uint32_t Speed);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup MMC_Exported_Functions MMC Exported Functions
* @{
*/
/** @defgroup MMC_Exported_Functions_Group1 MMC_Exported_Functions_Group1
* @brief Initialization and de-initialization functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides functions allowing to initialize/de-initialize the MMC
card device to be ready for use.
@endverbatim
* @{
*/
/**
* @brief Initializes the MMC according to the specified parameters in the
MMC_HandleTypeDef and create the associated handle.
* @param hmmc Pointer to the MMC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_Init(MMC_HandleTypeDef *hmmc)
{
/* Check the MMC handle allocation */
if(hmmc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SDMMC_ALL_INSTANCE(hmmc->Instance));
assert_param(IS_SDMMC_CLOCK_EDGE(hmmc->Init.ClockEdge));
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
assert_param(IS_SDMMC_CLOCK_BYPASS(hmmc->Init.ClockBypass));
#endif
assert_param(IS_SDMMC_CLOCK_POWER_SAVE(hmmc->Init.ClockPowerSave));
assert_param(IS_SDMMC_BUS_WIDE(hmmc->Init.BusWide));
assert_param(IS_SDMMC_HARDWARE_FLOW_CONTROL(hmmc->Init.HardwareFlowControl));
assert_param(IS_SDMMC_CLKDIV(hmmc->Init.ClockDiv));
if(hmmc->State == HAL_MMC_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hmmc->Lock = HAL_UNLOCKED;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
/* Reset Callback pointers in HAL_MMC_STATE_RESET only */
hmmc->TxCpltCallback = HAL_MMC_TxCpltCallback;
hmmc->RxCpltCallback = HAL_MMC_RxCpltCallback;
hmmc->ErrorCallback = HAL_MMC_ErrorCallback;
hmmc->AbortCpltCallback = HAL_MMC_AbortCallback;
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
hmmc->Read_DMADblBuf0CpltCallback = HAL_MMCEx_Read_DMADoubleBuffer0CpltCallback;
hmmc->Read_DMADblBuf1CpltCallback = HAL_MMCEx_Read_DMADoubleBuffer1CpltCallback;
hmmc->Write_DMADblBuf0CpltCallback = HAL_MMCEx_Write_DMADoubleBuffer0CpltCallback;
hmmc->Write_DMADblBuf1CpltCallback = HAL_MMCEx_Write_DMADoubleBuffer1CpltCallback;
#endif
if(hmmc->MspInitCallback == NULL)
{
hmmc->MspInitCallback = HAL_MMC_MspInit;
}
/* Init the low level hardware */
hmmc->MspInitCallback(hmmc);
#else
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
HAL_MMC_MspInit(hmmc);
#endif
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize the Card parameters */
if(HAL_MMC_InitCard(hmmc) == HAL_ERROR)
{
return HAL_ERROR;
}
/* Initialize the error code */
hmmc->ErrorCode = HAL_DMA_ERROR_NONE;
/* Initialize the MMC operation */
hmmc->Context = MMC_CONTEXT_NONE;
/* Initialize the MMC state */
hmmc->State = HAL_MMC_STATE_READY;
/* Configure bus width */
if (hmmc->Init.BusWide != SDMMC_BUS_WIDE_1B)
{
if (HAL_MMC_ConfigWideBusOperation(hmmc, hmmc->Init.BusWide) != HAL_OK)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Initializes the MMC Card.
* @param hmmc Pointer to MMC handle
* @note This function initializes the MMC card. It could be used when a card
re-initialization is needed.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_InitCard(MMC_HandleTypeDef *hmmc)
{
uint32_t errorstate;
MMC_InitTypeDef Init;
uint32_t sdmmc_clk;
/* Default SDMMC peripheral configuration for MMC card initialization */
Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
Init.ClockBypass = SDMMC_CLOCK_BYPASS_DISABLE;
#endif
Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
Init.BusWide = SDMMC_BUS_WIDE_1B;
Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE;
/* Init Clock should be less or equal to 400Khz*/
sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC1);
if (sdmmc_clk == 0U)
{
hmmc->State = HAL_MMC_STATE_READY;
hmmc->ErrorCode = SDMMC_ERROR_INVALID_PARAMETER;
return HAL_ERROR;
}
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
Init.ClockDiv = ((sdmmc_clk/MMC_INIT_FREQ) - 2U);
#else
Init.ClockDiv = sdmmc_clk/(2U*MMC_INIT_FREQ);
Init.Transceiver = SDMMC_TRANSCEIVER_DISABLE;
#endif
/* Initialize SDMMC peripheral interface with default configuration */
(void)SDMMC_Init(hmmc->Instance, Init);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Disable SDMMC Clock */
__HAL_MMC_DISABLE(hmmc);
#endif
/* Set Power State to ON */
(void)SDMMC_PowerState_ON(hmmc->Instance);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Enable MMC Clock */
__HAL_MMC_ENABLE(hmmc);
#endif
/* wait 74 Cycles: required power up waiting time before starting
the MMC initialization sequence */
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
sdmmc_clk = sdmmc_clk/(Init.ClockDiv + 2U);
#else
sdmmc_clk = sdmmc_clk/(2U*Init.ClockDiv);
#endif
HAL_Delay(1U+ (74U*1000U/(sdmmc_clk)));
/* Identify card operating voltage */
errorstate = MMC_PowerON(hmmc);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->State = HAL_MMC_STATE_READY;
hmmc->ErrorCode |= errorstate;
return HAL_ERROR;
}
/* Card initialization */
errorstate = MMC_InitCard(hmmc);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->State = HAL_MMC_STATE_READY;
hmmc->ErrorCode |= errorstate;
return HAL_ERROR;
}
/* Set Block Size for Card */
errorstate = SDMMC_CmdBlockLength(hmmc->Instance, MMC_BLOCKSIZE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief De-Initializes the MMC card.
* @param hmmc Pointer to MMC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_DeInit(MMC_HandleTypeDef *hmmc)
{
/* Check the MMC handle allocation */
if(hmmc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SDMMC_ALL_INSTANCE(hmmc->Instance));
hmmc->State = HAL_MMC_STATE_BUSY;
/* Set MMC power state to off */
MMC_PowerOFF(hmmc);
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
if(hmmc->MspDeInitCallback == NULL)
{
hmmc->MspDeInitCallback = HAL_MMC_MspDeInit;
}
/* DeInit the low level hardware */
hmmc->MspDeInitCallback(hmmc);
#else
/* De-Initialize the MSP layer */
HAL_MMC_MspDeInit(hmmc);
#endif
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
hmmc->State = HAL_MMC_STATE_RESET;
return HAL_OK;
}
/**
* @brief Initializes the MMC MSP.
* @param hmmc Pointer to MMC handle
* @retval None
*/
__weak void HAL_MMC_MspInit(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MMC_MspInit could be implemented in the user file
*/
}
/**
* @brief De-Initialize MMC MSP.
* @param hmmc Pointer to MMC handle
* @retval None
*/
__weak void HAL_MMC_MspDeInit(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MMC_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @addtogroup MMC_Exported_Functions_Group2
* @brief Data transfer functions
*
@verbatim
==============================================================================
##### IO operation functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to manage the data
transfer from/to MMC card.
@endverbatim
* @{
*/
/**
* @brief Reads block(s) from a specified address in a card. The Data transfer
* is managed by polling mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @param pData pointer to the buffer that will contain the received data
* @param BlockAdd Block Address from where data is to be read
* @param NumberOfBlocks Number of MMC blocks to read
* @param Timeout Specify timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ReadBlocks(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t tickstart = HAL_GetTick();
uint32_t count, data, dataremaining;
uint32_t add = BlockAdd;
uint8_t *tempbuff = pData;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = NumberOfBlocks * MMC_BLOCKSIZE;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
config.DPSM = SDMMC_DPSM_ENABLE;
#else
config.DPSM = SDMMC_DPSM_DISABLE;
#endif
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
#endif
/* Read block(s) in polling mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = MMC_CONTEXT_READ_MULTIPLE_BLOCK;
/* Read Multi Block command */
errorstate = SDMMC_CmdReadMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = MMC_CONTEXT_READ_SINGLE_BLOCK;
/* Read Single Block command */
errorstate = SDMMC_CmdReadSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
/* Poll on SDMMC flags */
dataremaining = config.DataLength;
while(!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND))
{
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXFIFOHF) && (dataremaining > 0U))
{
/* Read data from SDMMC Rx FIFO */
for(count = 0U; count < 8U; count++)
{
data = SDMMC_ReadFIFO(hmmc->Instance);
*tempbuff = (uint8_t)(data & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 8U) & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 16U) & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 24U) & 0xFFU);
tempbuff++;
dataremaining--;
}
}
if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_TIMEOUT;
hmmc->State= HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_TIMEOUT;
}
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_DISABLE( hmmc->Instance);
#endif
/* Send stop transmission command in case of multiblock read */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1U))
{
/* Send stop transmission command */
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
}
/* Get error state */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DTIMEOUT))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_TIMEOUT;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DCRCFAIL))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_CRC_FAIL;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_RX_OVERRUN;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Empty FIFO if there is still any data */
while ((__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXDAVL)) && (dataremaining > 0U))
{
data = SDMMC_ReadFIFO(hmmc->Instance);
*tempbuff = (uint8_t)(data & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 8U) & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 16U) & 0xFFU);
tempbuff++;
dataremaining--;
*tempbuff = (uint8_t)((data >> 24U) & 0xFFU);
tempbuff++;
dataremaining--;
if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_TIMEOUT;
hmmc->State= HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
}
#endif
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
return HAL_OK;
}
else
{
hmmc->ErrorCode |= HAL_MMC_ERROR_BUSY;
return HAL_ERROR;
}
}
/**
* @brief Allows to write block(s) to a specified address in a card. The Data
* transfer is managed by polling mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @param pData pointer to the buffer that will contain the data to transmit
* @param BlockAdd Block Address where data will be written
* @param NumberOfBlocks Number of MMC blocks to write
* @param Timeout Specify timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_WriteBlocks(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t tickstart = HAL_GetTick();
uint32_t count, data, dataremaining;
uint32_t add = BlockAdd;
uint8_t *tempbuff = pData;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = NumberOfBlocks * MMC_BLOCKSIZE;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_DISABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
#endif
/* Write Blocks in Polling mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = MMC_CONTEXT_WRITE_MULTIPLE_BLOCK;
/* Write Multi Block command */
errorstate = SDMMC_CmdWriteMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = MMC_CONTEXT_WRITE_SINGLE_BLOCK;
/* Write Single Block command */
errorstate = SDMMC_CmdWriteSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = NumberOfBlocks * MMC_BLOCKSIZE;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_ENABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#endif
/* Write block(s) in polling mode */
dataremaining = config.DataLength;
while(!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_TXUNDERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND))
{
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_TXFIFOHE) && (dataremaining > 0U))
{
/* Write data to SDMMC Tx FIFO */
for(count = 0U; count < 8U; count++)
{
data = (uint32_t)(*tempbuff);
tempbuff++;
dataremaining--;
data |= ((uint32_t)(*tempbuff) << 8U);
tempbuff++;
dataremaining--;
data |= ((uint32_t)(*tempbuff) << 16U);
tempbuff++;
dataremaining--;
data |= ((uint32_t)(*tempbuff) << 24U);
tempbuff++;
dataremaining--;
(void)SDMMC_WriteFIFO(hmmc->Instance, &data);
}
}
if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_TIMEOUT;
}
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_DISABLE( hmmc->Instance);
#endif
/* Send stop transmission command in case of multiblock write */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1U))
{
/* Send stop transmission command */
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
}
/* Get error state */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DTIMEOUT))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_TIMEOUT;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DCRCFAIL))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_CRC_FAIL;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_TXUNDERR))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_TX_UNDERRUN;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
return HAL_OK;
}
else
{
hmmc->ErrorCode |= HAL_MMC_ERROR_BUSY;
return HAL_ERROR;
}
}
/**
* @brief Reads block(s) from a specified address in a card. The Data transfer
* is managed in interrupt mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @note You could also check the IT transfer process through the MMC Rx
* interrupt event.
* @param hmmc Pointer to MMC handle
* @param pData Pointer to the buffer that will contain the received data
* @param BlockAdd Block Address from where data is to be read
* @param NumberOfBlocks Number of blocks to read.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ReadBlocks_IT(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t add = BlockAdd;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
hmmc->pRxBuffPtr = pData;
hmmc->RxXferSize = MMC_BLOCKSIZE * NumberOfBlocks;
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
config.DPSM = SDMMC_DPSM_ENABLE;
#else
config.DPSM = SDMMC_DPSM_DISABLE;
#endif
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
#endif
/* Read Blocks in IT mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = (MMC_CONTEXT_READ_MULTIPLE_BLOCK | MMC_CONTEXT_IT);
/* Read Multi Block command */
errorstate = SDMMC_CmdReadMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = (MMC_CONTEXT_READ_SINGLE_BLOCK | MMC_CONTEXT_IT);
/* Read Single Block command */
errorstate = SDMMC_CmdReadSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_RXOVERR | SDMMC_IT_DATAEND | SDMMC_FLAG_RXFIFOHF));
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Writes block(s) to a specified address in a card. The Data transfer
* is managed in interrupt mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @note You could also check the IT transfer process through the MMC Tx
* interrupt event.
* @param hmmc Pointer to MMC handle
* @param pData Pointer to the buffer that will contain the data to transmit
* @param BlockAdd Block Address where data will be written
* @param NumberOfBlocks Number of blocks to write
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_WriteBlocks_IT(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t add = BlockAdd;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
hmmc->pTxBuffPtr = pData;
hmmc->TxXferSize = MMC_BLOCKSIZE * NumberOfBlocks;
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_DISABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
#endif
/* Write Blocks in Polling mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = (MMC_CONTEXT_WRITE_MULTIPLE_BLOCK| MMC_CONTEXT_IT);
/* Write Multi Block command */
errorstate = SDMMC_CmdWriteMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = (MMC_CONTEXT_WRITE_SINGLE_BLOCK | MMC_CONTEXT_IT);
/* Write Single Block command */
errorstate = SDMMC_CmdWriteSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_ENABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#endif
/* Enable transfer interrupts */
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_TXUNDERR | SDMMC_IT_DATAEND | SDMMC_FLAG_TXFIFOHE));
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Reads block(s) from a specified address in a card. The Data transfer
* is managed by DMA mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @note You could also check the DMA transfer process through the MMC Rx
* interrupt event.
* @param hmmc Pointer MMC handle
* @param pData Pointer to the buffer that will contain the received data
* @param BlockAdd Block Address from where data is to be read
* @param NumberOfBlocks Number of blocks to read.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ReadBlocks_DMA(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t add = BlockAdd;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Set the DMA transfer complete callback */
hmmc->hdmarx->XferCpltCallback = MMC_DMAReceiveCplt;
/* Set the DMA error callback */
hmmc->hdmarx->XferErrorCallback = MMC_DMAError;
/* Set the DMA Abort callback */
hmmc->hdmarx->XferAbortCallback = NULL;
#else
hmmc->pRxBuffPtr = pData;
hmmc->RxXferSize = MMC_BLOCKSIZE * NumberOfBlocks;
#endif
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_DISABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
hmmc->Instance->IDMABASE0 = (uint32_t) pData ;
hmmc->Instance->IDMACTRL = SDMMC_ENABLE_IDMA_SINGLE_BUFF;
#else
/* Enable the DMA Channel */
if(HAL_DMA_Start_IT(hmmc->hdmarx, (uint32_t)&hmmc->Instance->FIFO, (uint32_t)pData, (uint32_t)(MMC_BLOCKSIZE * NumberOfBlocks)/4) != HAL_OK)
{
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode = HAL_MMC_ERROR_DMA;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else
{
/* Enable MMC DMA transfer */
__HAL_MMC_DMA_ENABLE(hmmc);
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_ENABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#endif
/* Read Blocks in DMA mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = (MMC_CONTEXT_READ_MULTIPLE_BLOCK | MMC_CONTEXT_DMA);
/* Read Multi Block command */
errorstate = SDMMC_CmdReadMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = (MMC_CONTEXT_READ_SINGLE_BLOCK | MMC_CONTEXT_DMA);
/* Read Single Block command */
errorstate = SDMMC_CmdReadSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode = errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
/* Enable transfer interrupts */
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_RXOVERR | SDMMC_IT_DATAEND));
return HAL_OK;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
}
#endif
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Writes block(s) to a specified address in a card. The Data transfer
* is managed by DMA mode.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @note You could also check the DMA transfer process through the MMC Tx
* interrupt event.
* @param hmmc Pointer to MMC handle
* @param pData Pointer to the buffer that will contain the data to transmit
* @param BlockAdd Block Address where data will be written
* @param NumberOfBlocks Number of blocks to write
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_WriteBlocks_DMA(MMC_HandleTypeDef *hmmc, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t add = BlockAdd;
if(NULL == pData)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if((add + NumberOfBlocks) > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0U;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Set the DMA transfer complete callback */
hmmc->hdmatx->XferCpltCallback = MMC_DMATransmitCplt;
/* Set the DMA error callback */
hmmc->hdmatx->XferErrorCallback = MMC_DMAError;
/* Set the DMA Abort callback */
hmmc->hdmatx->XferAbortCallback = NULL;
#else
hmmc->pTxBuffPtr = pData;
hmmc->TxXferSize = MMC_BLOCKSIZE * NumberOfBlocks;
#endif
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
add *= 512U;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_DISABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
hmmc->Instance->IDMABASE0 = (uint32_t) pData ;
hmmc->Instance->IDMACTRL = SDMMC_ENABLE_IDMA_SINGLE_BUFF;
#endif
/* Write Blocks in Polling mode */
if(NumberOfBlocks > 1U)
{
hmmc->Context = (MMC_CONTEXT_WRITE_MULTIPLE_BLOCK | MMC_CONTEXT_DMA);
/* Write Multi Block command */
errorstate = SDMMC_CmdWriteMultiBlock(hmmc->Instance, add);
}
else
{
hmmc->Context = (MMC_CONTEXT_WRITE_SINGLE_BLOCK | MMC_CONTEXT_DMA);
/* Write Single Block command */
errorstate = SDMMC_CmdWriteSingleBlock(hmmc->Instance, add);
}
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/* Enable SDMMC DMA transfer */
__HAL_MMC_DMA_ENABLE(hmmc);
/* Enable the DMA Channel */
if(HAL_DMA_Start_IT(hmmc->hdmatx, (uint32_t)pData, (uint32_t)&hmmc->Instance->FIFO, (uint32_t)(MMC_BLOCKSIZE * NumberOfBlocks)/4) != HAL_OK)
{
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DMA;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
return HAL_ERROR;
}
else
{
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = MMC_BLOCKSIZE * NumberOfBlocks;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_ENABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
/* Enable MMC Error interrupts */
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_TXUNDERR));
return HAL_OK;
}
#else
/* Enable MMC Error interrupts */
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_TXUNDERR | SDMMC_IT_DATAEND));
return HAL_OK;
#endif
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Erases the specified memory area of the given MMC card.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @param BlockStartAdd Start Block address
* @param BlockEndAdd End Block address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_Erase(MMC_HandleTypeDef *hmmc, uint32_t BlockStartAdd, uint32_t BlockEndAdd)
{
uint32_t errorstate;
uint32_t start_add = BlockStartAdd;
uint32_t end_add = BlockEndAdd;
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
if(end_add < start_add)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(end_add > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_BUSY;
/* Check if the card command class supports erase command */
if(((hmmc->MmcCard.Class) & SDMMC_CCCC_ERASE) == 0U)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_REQUEST_NOT_APPLICABLE;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
if((SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1) & SDMMC_CARD_LOCKED) == SDMMC_CARD_LOCKED)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_LOCK_UNLOCK_FAILED;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
start_add *= 512U;
end_add *= 512U;
}
/* Send CMD35 MMC_ERASE_GRP_START with argument as addr */
errorstate = SDMMC_CmdEraseStartAdd(hmmc->Instance, start_add);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
/* Send CMD36 MMC_ERASE_GRP_END with argument as addr */
errorstate = SDMMC_CmdEraseEndAdd(hmmc->Instance, end_add);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
/* Send CMD38 ERASE */
errorstate = SDMMC_CmdErase(hmmc->Instance, 0UL);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
hmmc->State = HAL_MMC_STATE_READY;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief This function handles MMC card interrupt request.
* @param hmmc Pointer to MMC handle
* @retval None
*/
void HAL_MMC_IRQHandler(MMC_HandleTypeDef *hmmc)
{
uint32_t errorstate;
uint32_t context = hmmc->Context;
/* Check for SDMMC interrupt flags */
if((__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXFIFOHF) != RESET) && ((context & MMC_CONTEXT_IT) != 0U))
{
MMC_Read_IT(hmmc);
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DATAEND) != RESET)
{
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_DATAEND);
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_DATAEND | SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT |\
SDMMC_IT_TXUNDERR | SDMMC_IT_RXOVERR | SDMMC_IT_TXFIFOHE |\
SDMMC_IT_RXFIFOHF);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
hmmc->Instance->DCTRL &= ~(SDMMC_DCTRL_DTEN);
#else
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_IDMABTC);
__SDMMC_CMDTRANS_DISABLE( hmmc->Instance);
#endif
if((context & MMC_CONTEXT_DMA) != 0U)
{
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
hmmc->Instance->DLEN = 0;
hmmc->Instance->DCTRL = 0;
hmmc->Instance->IDMACTRL = SDMMC_DISABLE_IDMA ;
/* Stop Transfer for Write Multi blocks or Read Multi blocks */
if(((context & MMC_CONTEXT_READ_MULTIPLE_BLOCK) != 0U) || ((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U))
{
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
if(((context & MMC_CONTEXT_WRITE_SINGLE_BLOCK) != 0U) || ((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U))
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->TxCpltCallback(hmmc);
#else
HAL_MMC_TxCpltCallback(hmmc);
#endif
}
if(((context & MMC_CONTEXT_READ_SINGLE_BLOCK) != 0U) || ((context & MMC_CONTEXT_READ_MULTIPLE_BLOCK) != 0U))
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->RxCpltCallback(hmmc);
#else
HAL_MMC_RxCpltCallback(hmmc);
#endif
}
#else
if((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U)
{
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
/* Disable the DMA transfer for transmit request by setting the DMAEN bit
in the MMC DCTRL register */
hmmc->Instance->DCTRL &= (uint32_t)~((uint32_t)SDMMC_DCTRL_DMAEN);
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
if(((context & MMC_CONTEXT_READ_SINGLE_BLOCK) == 0U) && ((context & MMC_CONTEXT_READ_MULTIPLE_BLOCK) == 0U))
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->TxCpltCallback(hmmc);
#else
HAL_MMC_TxCpltCallback(hmmc);
#endif
}
#endif
}
else if((context & MMC_CONTEXT_IT) != 0U)
{
/* Stop Transfer for Write Multi blocks or Read Multi blocks */
if(((context & MMC_CONTEXT_READ_MULTIPLE_BLOCK) != 0U) || ((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U))
{
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
if(((context & MMC_CONTEXT_READ_SINGLE_BLOCK) != 0U) || ((context & MMC_CONTEXT_READ_MULTIPLE_BLOCK) != 0U))
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->RxCpltCallback(hmmc);
#else
HAL_MMC_RxCpltCallback(hmmc);
#endif
}
else
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->TxCpltCallback(hmmc);
#else
HAL_MMC_TxCpltCallback(hmmc);
#endif
}
}
else
{
/* Nothing to do */
}
}
else if((__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_TXFIFOHE) != RESET) && ((context & MMC_CONTEXT_IT) != 0U))
{
MMC_Write_IT(hmmc);
}
else if (__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DCRCFAIL| SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_RXOVERR | SDMMC_FLAG_TXUNDERR) != RESET)
{
/* Set Error code */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_IT_DCRCFAIL) != RESET)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_CRC_FAIL;
}
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_IT_DTIMEOUT) != RESET)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_TIMEOUT;
}
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_IT_RXOVERR) != RESET)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_RX_OVERRUN;
}
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_IT_TXUNDERR) != RESET)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_TX_UNDERRUN;
}
/* Clear All flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
/* Disable all interrupts */
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_DATAEND | SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT|\
SDMMC_IT_TXUNDERR| SDMMC_IT_RXOVERR);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_DISABLE( hmmc->Instance);
hmmc->Instance->DCTRL |= SDMMC_DCTRL_FIFORST;
hmmc->Instance->CMD |= SDMMC_CMD_CMDSTOP;
#endif
hmmc->ErrorCode |= SDMMC_CmdStopTransfer(hmmc->Instance);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
hmmc->Instance->CMD &= ~(SDMMC_CMD_CMDSTOP);
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_DABORT);
#endif
if((context & MMC_CONTEXT_IT) != 0U)
{
/* Set the MMC state to ready to be able to start again the process */
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif /* USE_HAL_MMC_REGISTER_CALLBACKS */
}
else if((context & MMC_CONTEXT_DMA) != 0U)
{
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
if(hmmc->ErrorCode != HAL_MMC_ERROR_NONE)
{
/* Disable Internal DMA */
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_IDMABTC);
hmmc->Instance->IDMACTRL = SDMMC_DISABLE_IDMA;
/* Set the MMC state to ready to be able to start again the process */
hmmc->State = HAL_MMC_STATE_READY;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif /* USE_HAL_MMC_REGISTER_CALLBACKS */
}
#else
/* Abort the MMC DMA Streams */
if(hmmc->hdmatx != NULL)
{
/* Set the DMA Tx abort callback */
hmmc->hdmatx->XferAbortCallback = MMC_DMATxAbort;
/* Abort DMA in IT mode */
if(HAL_DMA_Abort_IT(hmmc->hdmatx) != HAL_OK)
{
MMC_DMATxAbort(hmmc->hdmatx);
}
}
else if(hmmc->hdmarx != NULL)
{
/* Set the DMA Rx abort callback */
hmmc->hdmarx->XferAbortCallback = MMC_DMARxAbort;
/* Abort DMA in IT mode */
if(HAL_DMA_Abort_IT(hmmc->hdmarx) != HAL_OK)
{
MMC_DMARxAbort(hmmc->hdmarx);
}
}
else
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->AbortCpltCallback(hmmc);
#else
HAL_MMC_AbortCallback(hmmc);
#endif
}
#endif
}
else
{
/* Nothing to do */
}
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_IDMABTC) != RESET)
{
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_IT_IDMABTC);
if(READ_BIT(hmmc->Instance->IDMACTRL, SDMMC_IDMA_IDMABACT) == 0U)
{
/* Current buffer is buffer0, Transfer complete for buffer1 */
if((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U)
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->Write_DMADblBuf1CpltCallback(hmmc);
#else
HAL_MMCEx_Write_DMADoubleBuffer1CpltCallback(hmmc);
#endif
}
else /* MMC_CONTEXT_READ_MULTIPLE_BLOCK */
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->Read_DMADblBuf1CpltCallback(hmmc);
#else
HAL_MMCEx_Read_DMADoubleBuffer1CpltCallback(hmmc);
#endif
}
}
else /* MMC_DMA_BUFFER1 */
{
/* Current buffer is buffer1, Transfer complete for buffer0 */
if((context & MMC_CONTEXT_WRITE_MULTIPLE_BLOCK) != 0U)
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->Write_DMADblBuf0CpltCallback(hmmc);
#else
HAL_MMCEx_Write_DMADoubleBuffer0CpltCallback(hmmc);
#endif
}
else /* MMC_CONTEXT_READ_MULTIPLE_BLOCK */
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->Read_DMADblBuf0CpltCallback(hmmc);
#else
HAL_MMCEx_Read_DMADoubleBuffer0CpltCallback(hmmc);
#endif
}
}
}
#endif
else
{
/* Nothing to do */
}
}
/**
* @brief return the MMC state
* @param hmmc Pointer to mmc handle
* @retval HAL state
*/
HAL_MMC_StateTypeDef HAL_MMC_GetState(MMC_HandleTypeDef *hmmc)
{
return hmmc->State;
}
/**
* @brief Return the MMC error code
* @param hmmc : Pointer to a MMC_HandleTypeDef structure that contains
* the configuration information.
* @retval MMC Error Code
*/
uint32_t HAL_MMC_GetError(MMC_HandleTypeDef *hmmc)
{
return hmmc->ErrorCode;
}
/**
* @brief Tx Transfer completed callbacks
* @param hmmc Pointer to MMC handle
* @retval None
*/
__weak void HAL_MMC_TxCpltCallback(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MMC_TxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callbacks
* @param hmmc Pointer MMC handle
* @retval None
*/
__weak void HAL_MMC_RxCpltCallback(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MMC_RxCpltCallback can be implemented in the user file
*/
}
/**
* @brief MMC error callbacks
* @param hmmc Pointer MMC handle
* @retval None
*/
__weak void HAL_MMC_ErrorCallback(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MMC_ErrorCallback can be implemented in the user file
*/
}
/**
* @brief MMC Abort callbacks
* @param hmmc Pointer MMC handle
* @retval None
*/
__weak void HAL_MMC_AbortCallback(MMC_HandleTypeDef *hmmc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hmmc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MMC_AbortCallback can be implemented in the user file
*/
}
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
/**
* @brief Register a User MMC Callback
* To be used instead of the weak (surcharged) predefined callback
* @param hmmc : MMC handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_MMC_TX_CPLT_CB_ID MMC Tx Complete Callback ID
* @arg @ref HAL_MMC_RX_CPLT_CB_ID MMC Rx Complete Callback ID
* @arg @ref HAL_MMC_ERROR_CB_ID MMC Error Callback ID
* @arg @ref HAL_MMC_ABORT_CB_ID MMC Abort Callback ID
* @arg @ref HAL_MMC_READ_DMA_DBL_BUF0_CPLT_CB_ID MMC DMA Rx Double buffer 0 Callback ID
* @arg @ref HAL_MMC_READ_DMA_DBL_BUF1_CPLT_CB_ID MMC DMA Rx Double buffer 1 Callback ID
* @arg @ref HAL_MMC_WRITE_DMA_DBL_BUF0_CPLT_CB_ID MMC DMA Tx Double buffer 0 Callback ID
* @arg @ref HAL_MMC_WRITE_DMA_DBL_BUF1_CPLT_CB_ID MMC DMA Tx Double buffer 1 Callback ID
* @arg @ref HAL_MMC_MSP_INIT_CB_ID MMC MspInit Callback ID
* @arg @ref HAL_MMC_MSP_DEINIT_CB_ID MMC MspDeInit Callback ID
* @param pCallback : pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_MMC_RegisterCallback(MMC_HandleTypeDef *hmmc, HAL_MMC_CallbackIDTypeDef CallbackId, pMMC_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if(pCallback == NULL)
{
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hmmc);
if(hmmc->State == HAL_MMC_STATE_READY)
{
switch (CallbackId)
{
case HAL_MMC_TX_CPLT_CB_ID :
hmmc->TxCpltCallback = pCallback;
break;
case HAL_MMC_RX_CPLT_CB_ID :
hmmc->RxCpltCallback = pCallback;
break;
case HAL_MMC_ERROR_CB_ID :
hmmc->ErrorCallback = pCallback;
break;
case HAL_MMC_ABORT_CB_ID :
hmmc->AbortCpltCallback = pCallback;
break;
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
case HAL_MMC_READ_DMA_DBL_BUF0_CPLT_CB_ID :
hmmc->Read_DMADblBuf0CpltCallback = pCallback;
break;
case HAL_MMC_READ_DMA_DBL_BUF1_CPLT_CB_ID :
hmmc->Read_DMADblBuf1CpltCallback = pCallback;
break;
case HAL_MMC_WRITE_DMA_DBL_BUF0_CPLT_CB_ID :
hmmc->Write_DMADblBuf0CpltCallback = pCallback;
break;
case HAL_MMC_WRITE_DMA_DBL_BUF1_CPLT_CB_ID :
hmmc->Write_DMADblBuf1CpltCallback = pCallback;
break;
#endif
case HAL_MMC_MSP_INIT_CB_ID :
hmmc->MspInitCallback = pCallback;
break;
case HAL_MMC_MSP_DEINIT_CB_ID :
hmmc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hmmc->State == HAL_MMC_STATE_RESET)
{
switch (CallbackId)
{
case HAL_MMC_MSP_INIT_CB_ID :
hmmc->MspInitCallback = pCallback;
break;
case HAL_MMC_MSP_DEINIT_CB_ID :
hmmc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hmmc);
return status;
}
/**
* @brief Unregister a User MMC Callback
* MMC Callback is redirected to the weak (surcharged) predefined callback
* @param hmmc : MMC handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_MMC_TX_CPLT_CB_ID MMC Tx Complete Callback ID
* @arg @ref HAL_MMC_RX_CPLT_CB_ID MMC Rx Complete Callback ID
* @arg @ref HAL_MMC_ERROR_CB_ID MMC Error Callback ID
* @arg @ref HAL_MMC_ABORT_CB_ID MMC Abort Callback ID
* @arg @ref HAL_MMC_READ_DMA_DBL_BUF0_CPLT_CB_ID MMC DMA Rx Double buffer 0 Callback ID
* @arg @ref HAL_MMC_READ_DMA_DBL_BUF1_CPLT_CB_ID MMC DMA Rx Double buffer 1 Callback ID
* @arg @ref HAL_MMC_WRITE_DMA_DBL_BUF0_CPLT_CB_ID MMC DMA Tx Double buffer 0 Callback ID
* @arg @ref HAL_MMC_WRITE_DMA_DBL_BUF1_CPLT_CB_ID MMC DMA Tx Double buffer 1 Callback ID
* @arg @ref HAL_MMC_MSP_INIT_CB_ID MMC MspInit Callback ID
* @arg @ref HAL_MMC_MSP_DEINIT_CB_ID MMC MspDeInit Callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_MMC_UnRegisterCallback(MMC_HandleTypeDef *hmmc, HAL_MMC_CallbackIDTypeDef CallbackId)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hmmc);
if(hmmc->State == HAL_MMC_STATE_READY)
{
switch (CallbackId)
{
case HAL_MMC_TX_CPLT_CB_ID :
hmmc->TxCpltCallback = HAL_MMC_TxCpltCallback;
break;
case HAL_MMC_RX_CPLT_CB_ID :
hmmc->RxCpltCallback = HAL_MMC_RxCpltCallback;
break;
case HAL_MMC_ERROR_CB_ID :
hmmc->ErrorCallback = HAL_MMC_ErrorCallback;
break;
case HAL_MMC_ABORT_CB_ID :
hmmc->AbortCpltCallback = HAL_MMC_AbortCallback;
break;
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
case HAL_MMC_READ_DMA_DBL_BUF0_CPLT_CB_ID :
hmmc->Read_DMADblBuf0CpltCallback = HAL_MMCEx_Read_DMADoubleBuffer0CpltCallback;
break;
case HAL_MMC_READ_DMA_DBL_BUF1_CPLT_CB_ID :
hmmc->Read_DMADblBuf1CpltCallback = HAL_MMCEx_Read_DMADoubleBuffer1CpltCallback;
break;
case HAL_MMC_WRITE_DMA_DBL_BUF0_CPLT_CB_ID :
hmmc->Write_DMADblBuf0CpltCallback = HAL_MMCEx_Write_DMADoubleBuffer0CpltCallback;
break;
case HAL_MMC_WRITE_DMA_DBL_BUF1_CPLT_CB_ID :
hmmc->Write_DMADblBuf1CpltCallback = HAL_MMCEx_Write_DMADoubleBuffer1CpltCallback;
break;
#endif
case HAL_MMC_MSP_INIT_CB_ID :
hmmc->MspInitCallback = HAL_MMC_MspInit;
break;
case HAL_MMC_MSP_DEINIT_CB_ID :
hmmc->MspDeInitCallback = HAL_MMC_MspDeInit;
break;
default :
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hmmc->State == HAL_MMC_STATE_RESET)
{
switch (CallbackId)
{
case HAL_MMC_MSP_INIT_CB_ID :
hmmc->MspInitCallback = HAL_MMC_MspInit;
break;
case HAL_MMC_MSP_DEINIT_CB_ID :
hmmc->MspDeInitCallback = HAL_MMC_MspDeInit;
break;
default :
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hmmc->ErrorCode |= HAL_MMC_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hmmc);
return status;
}
#endif
/**
* @}
*/
/** @addtogroup MMC_Exported_Functions_Group3
* @brief management functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the MMC card
operations and get the related information
@endverbatim
* @{
*/
/**
* @brief Returns information the information of the card which are stored on
* the CID register.
* @param hmmc Pointer to MMC handle
* @param pCID Pointer to a HAL_MMC_CIDTypedef structure that
* contains all CID register parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_GetCardCID(MMC_HandleTypeDef *hmmc, HAL_MMC_CardCIDTypeDef *pCID)
{
pCID->ManufacturerID = (uint8_t)((hmmc->CID[0] & 0xFF000000U) >> 24U);
pCID->OEM_AppliID = (uint16_t)((hmmc->CID[0] & 0x00FFFF00U) >> 8U);
pCID->ProdName1 = (((hmmc->CID[0] & 0x000000FFU) << 24U) | ((hmmc->CID[1] & 0xFFFFFF00U) >> 8U));
pCID->ProdName2 = (uint8_t)(hmmc->CID[1] & 0x000000FFU);
pCID->ProdRev = (uint8_t)((hmmc->CID[2] & 0xFF000000U) >> 24U);
pCID->ProdSN = (((hmmc->CID[2] & 0x00FFFFFFU) << 8U) | ((hmmc->CID[3] & 0xFF000000U) >> 24U));
pCID->Reserved1 = (uint8_t)((hmmc->CID[3] & 0x00F00000U) >> 20U);
pCID->ManufactDate = (uint16_t)((hmmc->CID[3] & 0x000FFF00U) >> 8U);
pCID->CID_CRC = (uint8_t)((hmmc->CID[3] & 0x000000FEU) >> 1U);
pCID->Reserved2 = 1U;
return HAL_OK;
}
/**
* @brief Returns information the information of the card which are stored on
* the CSD register.
* @param hmmc Pointer to MMC handle
* @param pCSD Pointer to a HAL_MMC_CardCSDTypeDef structure that
* contains all CSD register parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_GetCardCSD(MMC_HandleTypeDef *hmmc, HAL_MMC_CardCSDTypeDef *pCSD)
{
uint32_t block_nbr = 0;
pCSD->CSDStruct = (uint8_t)((hmmc->CSD[0] & 0xC0000000U) >> 30U);
pCSD->SysSpecVersion = (uint8_t)((hmmc->CSD[0] & 0x3C000000U) >> 26U);
pCSD->Reserved1 = (uint8_t)((hmmc->CSD[0] & 0x03000000U) >> 24U);
pCSD->TAAC = (uint8_t)((hmmc->CSD[0] & 0x00FF0000U) >> 16U);
pCSD->NSAC = (uint8_t)((hmmc->CSD[0] & 0x0000FF00U) >> 8U);
pCSD->MaxBusClkFrec = (uint8_t)(hmmc->CSD[0] & 0x000000FFU);
pCSD->CardComdClasses = (uint16_t)((hmmc->CSD[1] & 0xFFF00000U) >> 20U);
pCSD->RdBlockLen = (uint8_t)((hmmc->CSD[1] & 0x000F0000U) >> 16U);
pCSD->PartBlockRead = (uint8_t)((hmmc->CSD[1] & 0x00008000U) >> 15U);
pCSD->WrBlockMisalign = (uint8_t)((hmmc->CSD[1] & 0x00004000U) >> 14U);
pCSD->RdBlockMisalign = (uint8_t)((hmmc->CSD[1] & 0x00002000U) >> 13U);
pCSD->DSRImpl = (uint8_t)((hmmc->CSD[1] & 0x00001000U) >> 12U);
pCSD->Reserved2 = 0U; /*!< Reserved */
if(MMC_ReadExtCSD(hmmc, &block_nbr, 212, 0x0FFFFFFFU) != HAL_OK) /* Field SEC_COUNT [215:212] */
{
return HAL_ERROR;
}
if(hmmc->MmcCard.CardType == MMC_LOW_CAPACITY_CARD)
{
pCSD->DeviceSize = (((hmmc->CSD[1] & 0x000003FFU) << 2U) | ((hmmc->CSD[2] & 0xC0000000U) >> 30U));
pCSD->MaxRdCurrentVDDMin = (uint8_t)((hmmc->CSD[2] & 0x38000000U) >> 27U);
pCSD->MaxRdCurrentVDDMax = (uint8_t)((hmmc->CSD[2] & 0x07000000U) >> 24U);
pCSD->MaxWrCurrentVDDMin = (uint8_t)((hmmc->CSD[2] & 0x00E00000U) >> 21U);
pCSD->MaxWrCurrentVDDMax = (uint8_t)((hmmc->CSD[2] & 0x001C0000U) >> 18U);
pCSD->DeviceSizeMul = (uint8_t)((hmmc->CSD[2] & 0x00038000U) >> 15U);
hmmc->MmcCard.BlockNbr = (pCSD->DeviceSize + 1U) ;
hmmc->MmcCard.BlockNbr *= (1UL << ((pCSD->DeviceSizeMul & 0x07U) + 2U));
hmmc->MmcCard.BlockSize = (1UL << (pCSD->RdBlockLen & 0x0FU));
hmmc->MmcCard.LogBlockNbr = (hmmc->MmcCard.BlockNbr) * ((hmmc->MmcCard.BlockSize) / 512U);
hmmc->MmcCard.LogBlockSize = 512U;
}
else if(hmmc->MmcCard.CardType == MMC_HIGH_CAPACITY_CARD)
{
hmmc->MmcCard.BlockNbr = block_nbr;
hmmc->MmcCard.LogBlockNbr = hmmc->MmcCard.BlockNbr;
hmmc->MmcCard.BlockSize = 512U;
hmmc->MmcCard.LogBlockSize = hmmc->MmcCard.BlockSize;
}
else
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_UNSUPPORTED_FEATURE;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
pCSD->EraseGrSize = (uint8_t)((hmmc->CSD[2] & 0x00004000U) >> 14U);
pCSD->EraseGrMul = (uint8_t)((hmmc->CSD[2] & 0x00003F80U) >> 7U);
pCSD->WrProtectGrSize = (uint8_t)(hmmc->CSD[2] & 0x0000007FU);
pCSD->WrProtectGrEnable = (uint8_t)((hmmc->CSD[3] & 0x80000000U) >> 31U);
pCSD->ManDeflECC = (uint8_t)((hmmc->CSD[3] & 0x60000000U) >> 29U);
pCSD->WrSpeedFact = (uint8_t)((hmmc->CSD[3] & 0x1C000000U) >> 26U);
pCSD->MaxWrBlockLen= (uint8_t)((hmmc->CSD[3] & 0x03C00000U) >> 22U);
pCSD->WriteBlockPaPartial = (uint8_t)((hmmc->CSD[3] & 0x00200000U) >> 21U);
pCSD->Reserved3 = 0;
pCSD->ContentProtectAppli = (uint8_t)((hmmc->CSD[3] & 0x00010000U) >> 16U);
pCSD->FileFormatGroup = (uint8_t)((hmmc->CSD[3] & 0x00008000U) >> 15U);
pCSD->CopyFlag = (uint8_t)((hmmc->CSD[3] & 0x00004000U) >> 14U);
pCSD->PermWrProtect = (uint8_t)((hmmc->CSD[3] & 0x00002000U) >> 13U);
pCSD->TempWrProtect = (uint8_t)((hmmc->CSD[3] & 0x00001000U) >> 12U);
pCSD->FileFormat = (uint8_t)((hmmc->CSD[3] & 0x00000C00U) >> 10U);
pCSD->ECC= (uint8_t)((hmmc->CSD[3] & 0x00000300U) >> 8U);
pCSD->CSD_CRC = (uint8_t)((hmmc->CSD[3] & 0x000000FEU) >> 1U);
pCSD->Reserved4 = 1;
return HAL_OK;
}
/**
* @brief Gets the MMC card info.
* @param hmmc Pointer to MMC handle
* @param pCardInfo Pointer to the HAL_MMC_CardInfoTypeDef structure that
* will contain the MMC card status information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_GetCardInfo(MMC_HandleTypeDef *hmmc, HAL_MMC_CardInfoTypeDef *pCardInfo)
{
pCardInfo->CardType = (uint32_t)(hmmc->MmcCard.CardType);
pCardInfo->Class = (uint32_t)(hmmc->MmcCard.Class);
pCardInfo->RelCardAdd = (uint32_t)(hmmc->MmcCard.RelCardAdd);
pCardInfo->BlockNbr = (uint32_t)(hmmc->MmcCard.BlockNbr);
pCardInfo->BlockSize = (uint32_t)(hmmc->MmcCard.BlockSize);
pCardInfo->LogBlockNbr = (uint32_t)(hmmc->MmcCard.LogBlockNbr);
pCardInfo->LogBlockSize = (uint32_t)(hmmc->MmcCard.LogBlockSize);
return HAL_OK;
}
/**
* @brief Returns information the information of the card which are stored on
* the Extended CSD register.
* @param hmmc Pointer to MMC handle
* @param pExtCSD Pointer to a memory area (512 bytes) that contains all
* Extended CSD register parameters
* @param Timeout Specify timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_GetCardExtCSD(MMC_HandleTypeDef *hmmc, uint32_t *pExtCSD, uint32_t Timeout)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t tickstart = HAL_GetTick();
uint32_t count;
uint32_t *tmp_buf;
if(NULL == pExtCSD)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
if(hmmc->State == HAL_MMC_STATE_READY)
{
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
hmmc->State = HAL_MMC_STATE_BUSY;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0;
/* Initiaize the destination pointer */
tmp_buf = pExtCSD;
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = 512;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
config.DPSM = SDMMC_DPSM_ENABLE;
#else
config.DPSM = SDMMC_DPSM_DISABLE;
#endif
(void)SDMMC_ConfigData(hmmc->Instance, &config);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_ENABLE( hmmc->Instance);
#endif
/* Send ExtCSD Read command to Card */
errorstate = SDMMC_CmdSendEXTCSD(hmmc->Instance, 0);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
/* Poll on SDMMC flags */
while(!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND))
{
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXFIFOHF))
{
/* Read data from SDMMC Rx FIFO */
for(count = 0U; count < 8U; count++)
{
*tmp_buf = SDMMC_ReadFIFO(hmmc->Instance);
tmp_buf++;
}
}
if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_TIMEOUT;
hmmc->State= HAL_MMC_STATE_READY;
return HAL_TIMEOUT;
}
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
__SDMMC_CMDTRANS_DISABLE( hmmc->Instance);
#endif
/* Get error state */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DTIMEOUT))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_TIMEOUT;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DCRCFAIL))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_CRC_FAIL;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_RX_OVERRUN;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
}
return HAL_OK;
}
/**
* @brief Enables wide bus operation for the requested card if supported by
* card.
* @param hmmc Pointer to MMC handle
* @param WideMode Specifies the MMC card wide bus mode
* This parameter can be one of the following values:
* @arg SDMMC_BUS_WIDE_8B: 8-bit data transfer
* @arg SDMMC_BUS_WIDE_4B: 4-bit data transfer
* @arg SDMMC_BUS_WIDE_1B: 1-bit data transfer
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ConfigWideBusOperation(MMC_HandleTypeDef *hmmc, uint32_t WideMode)
{
uint32_t count;
SDMMC_InitTypeDef Init;
uint32_t errorstate;
uint32_t response = 0U;
/* Check the parameters */
assert_param(IS_SDMMC_BUS_WIDE(WideMode));
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* Check and update the power class if needed */
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_BUSSPEED) != 0U)
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_DDR) != 0U)
{
errorstate = MMC_PwrClassUpdate(hmmc, WideMode, SDMMC_SPEED_MODE_DDR);
}
else
{
errorstate = MMC_PwrClassUpdate(hmmc, WideMode, SDMMC_SPEED_MODE_HIGH);
}
}
else
{
errorstate = MMC_PwrClassUpdate(hmmc, WideMode, SDMMC_SPEED_MODE_DEFAULT);
}
#else
errorstate = MMC_PwrClassUpdate(hmmc, WideMode, 0U);
#endif
if(errorstate == HAL_MMC_ERROR_NONE)
{
if(WideMode == SDMMC_BUS_WIDE_8B)
{
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70200U);
}
else if(WideMode == SDMMC_BUS_WIDE_4B)
{
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70100U);
}
else if(WideMode == SDMMC_BUS_WIDE_1B)
{
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70000U);
}
else
{
/* WideMode is not a valid argument*/
errorstate = HAL_MMC_ERROR_PARAM;
}
/* Check for switch error and violation of the trial number of sending CMD 13 */
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_GENERAL_UNKNOWN_ERR;
}
else
{
/* Configure the SDMMC peripheral */
Init = hmmc->Init;
Init.BusWide = WideMode;
(void)SDMMC_Init(hmmc->Instance, Init);
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
return HAL_ERROR;
}
return HAL_OK;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/**
* @brief Configure the speed bus mode
* @param hmmc Pointer to the MMC handle
* @param SpeedMode Specifies the MMC card speed bus mode
* This parameter can be one of the following values:
* @arg SDMMC_SPEED_MODE_AUTO: Max speed mode supported by the card
* @arg SDMMC_SPEED_MODE_DEFAULT: Default Speed (MMC @ 26MHz)
* @arg SDMMC_SPEED_MODE_HIGH: High Speed (MMC @ 52 MHz)
* @arg SDMMC_SPEED_MODE_DDR: High Speed DDR (MMC DDR @ 52 MHz)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ConfigSpeedBusOperation(MMC_HandleTypeDef *hmmc, uint32_t SpeedMode)
{
uint32_t tickstart;
HAL_StatusTypeDef status = HAL_OK;
uint32_t device_type;
uint32_t errorstate;
/* Check the parameters */
assert_param(IS_SDMMC_SPEED_MODE(SpeedMode));
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Field DEVICE_TYPE [196 = 49*4] of Extended CSD register */
device_type = (hmmc->Ext_CSD[49] & 0x000000FFU);
switch (SpeedMode)
{
case SDMMC_SPEED_MODE_AUTO:
{
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS) != 0U) && ((device_type & 0x04U) != 0U))
{
/* High Speed DDR mode allowed */
errorstate = MMC_HighSpeed(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
else
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_CLKDIV) != 0U)
{
/* DDR mode not supported with CLKDIV = 0 */
errorstate = MMC_DDR_Mode(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
}
}
else if ((device_type & 0x02U) != 0U)
{
/* High Speed mode allowed */
errorstate = MMC_HighSpeed(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
else
{
/* Nothing to do : keep current speed */
}
break;
}
case SDMMC_SPEED_MODE_DDR:
{
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS) != 0U) && ((device_type & 0x04U) != 0U))
{
/* High Speed DDR mode allowed */
errorstate = MMC_HighSpeed(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
else
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_CLKDIV) != 0U)
{
/* DDR mode not supported with CLKDIV = 0 */
errorstate = MMC_DDR_Mode(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
}
}
else
{
/* High Speed DDR mode not allowed */
hmmc->ErrorCode |= HAL_MMC_ERROR_UNSUPPORTED_FEATURE;
status = HAL_ERROR;
}
break;
}
case SDMMC_SPEED_MODE_HIGH:
{
if ((device_type & 0x02U) != 0U)
{
/* High Speed mode allowed */
errorstate = MMC_HighSpeed(hmmc, ENABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
else
{
/* High Speed mode not allowed */
hmmc->ErrorCode |= HAL_MMC_ERROR_UNSUPPORTED_FEATURE;
status = HAL_ERROR;
}
break;
}
case SDMMC_SPEED_MODE_DEFAULT:
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_DDR) != 0U)
{
/* High Speed DDR mode activated */
errorstate = MMC_DDR_Mode(hmmc, DISABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_BUSSPEED) != 0U)
{
/* High Speed mode activated */
errorstate = MMC_HighSpeed(hmmc, DISABLE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
}
break;
}
default:
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
status = HAL_ERROR;
break;
}
/* Verify that MMC card is ready to use after Speed mode switch*/
tickstart = HAL_GetTick();
while ((HAL_MMC_GetCardState(hmmc) != HAL_MMC_CARD_TRANSFER))
{
if ((HAL_GetTick() - tickstart) >= SDMMC_DATATIMEOUT)
{
hmmc->ErrorCode = HAL_MMC_ERROR_TIMEOUT;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_TIMEOUT;
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
return status;
}
#endif
/**
* @brief Gets the current mmc card data state.
* @param hmmc pointer to MMC handle
* @retval Card state
*/
HAL_MMC_CardStateTypeDef HAL_MMC_GetCardState(MMC_HandleTypeDef *hmmc)
{
uint32_t cardstate;
uint32_t errorstate;
uint32_t resp1 = 0U;
errorstate = MMC_SendStatus(hmmc, &resp1);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
cardstate = ((resp1 >> 9U) & 0x0FU);
return (HAL_MMC_CardStateTypeDef)cardstate;
}
/**
* @brief Abort the current transfer and disable the MMC.
* @param hmmc pointer to a MMC_HandleTypeDef structure that contains
* the configuration information for MMC module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_Abort(MMC_HandleTypeDef *hmmc)
{
HAL_MMC_CardStateTypeDef CardState;
/* DIsable All interrupts */
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_DATAEND | SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT|\
SDMMC_IT_TXUNDERR| SDMMC_IT_RXOVERR);
/* Clear All flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
if((hmmc->hdmatx != NULL) || (hmmc->hdmarx != NULL))
{
/* Disable the MMC DMA request */
hmmc->Instance->DCTRL &= (uint32_t)~((uint32_t)SDMMC_DCTRL_DMAEN);
/* Abort the MMC DMA Tx Stream */
if(hmmc->hdmatx != NULL)
{
if(HAL_DMA_Abort(hmmc->hdmatx) != HAL_OK)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_DMA;
}
}
/* Abort the MMC DMA Rx Stream */
if(hmmc->hdmarx != NULL)
{
if(HAL_DMA_Abort(hmmc->hdmarx) != HAL_OK)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_DMA;
}
}
}
#else
/* If IDMA Context, disable Internal DMA */
hmmc->Instance->IDMACTRL = SDMMC_DISABLE_IDMA;
#endif
hmmc->State = HAL_MMC_STATE_READY;
/* Initialize the MMC operation */
hmmc->Context = MMC_CONTEXT_NONE;
CardState = HAL_MMC_GetCardState(hmmc);
if((CardState == HAL_MMC_CARD_RECEIVING) || (CardState == HAL_MMC_CARD_SENDING))
{
hmmc->ErrorCode = SDMMC_CmdStopTransfer(hmmc->Instance);
}
if(hmmc->ErrorCode != HAL_MMC_ERROR_NONE)
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Abort the current transfer and disable the MMC (IT mode).
* @param hmmc pointer to a MMC_HandleTypeDef structure that contains
* the configuration information for MMC module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_Abort_IT(MMC_HandleTypeDef *hmmc)
{
HAL_MMC_CardStateTypeDef CardState;
/* DIsable All interrupts */
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_DATAEND | SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT|\
SDMMC_IT_TXUNDERR| SDMMC_IT_RXOVERR);
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/* If IDMA Context, disable Internal DMA */
hmmc->Instance->IDMACTRL = SDMMC_DISABLE_IDMA;
#endif
/* Clear All flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
if((hmmc->hdmatx != NULL) || (hmmc->hdmarx != NULL))
{
/* Disable the MMC DMA request */
hmmc->Instance->DCTRL &= (uint32_t)~((uint32_t)SDMMC_DCTRL_DMAEN);
/* Abort the MMC DMA Tx Stream */
if(hmmc->hdmatx != NULL)
{
hmmc->hdmatx->XferAbortCallback = MMC_DMATxAbort;
if(HAL_DMA_Abort_IT(hmmc->hdmatx) != HAL_OK)
{
hmmc->hdmatx = NULL;
}
}
/* Abort the MMC DMA Rx Stream */
if(hmmc->hdmarx != NULL)
{
hmmc->hdmarx->XferAbortCallback = MMC_DMARxAbort;
if(HAL_DMA_Abort_IT(hmmc->hdmarx) != HAL_OK)
{
hmmc->hdmarx = NULL;
}
}
}
/* No transfer ongoing on both DMA channels*/
if((hmmc->hdmatx == NULL) && (hmmc->hdmarx == NULL))
{
#endif
CardState = HAL_MMC_GetCardState(hmmc);
hmmc->State = HAL_MMC_STATE_READY;
if((CardState == HAL_MMC_CARD_RECEIVING) || (CardState == HAL_MMC_CARD_SENDING))
{
hmmc->ErrorCode = SDMMC_CmdStopTransfer(hmmc->Instance);
}
if(hmmc->ErrorCode != HAL_MMC_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->AbortCpltCallback(hmmc);
#else
HAL_MMC_AbortCallback(hmmc);
#endif
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
}
#endif
}
return HAL_OK;
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/**
* @brief Perform specific commands sequence for the different type of erase.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @param EraseType Specifies the type of erase to be performed
* This parameter can be one of the following values:
* @arg HAL_MMC_ERASE Erase the erase groups identified by CMD35 & 36
* @arg HAL_MMC_TRIM Erase the write blocks identified by CMD35 & 36
* @arg HAL_MMC_DISCARD Discard the write blocks identified by CMD35 & 36
* @arg HAL_MMC_SECURE_ERASE Perform a secure purge according SRT on the erase groups identified by CMD35 & 36
* @arg HAL_MMC_SECURE_TRIM_STEP1 Mark the write blocks identified by CMD35 & 36 for secure erase
* @arg HAL_MMC_SECURE_TRIM_STEP2 Perform a secure purge according SRT on the write blocks previously identified
* @param BlockStartAdd Start Block address
* @param BlockEndAdd End Block address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_EraseSequence(MMC_HandleTypeDef *hmmc, uint32_t EraseType, uint32_t BlockStartAdd, uint32_t BlockEndAdd)
{
uint32_t errorstate;
uint32_t start_add = BlockStartAdd;
uint32_t end_add = BlockEndAdd;
uint32_t tickstart = HAL_GetTick();
/* Check the erase type value is correct */
assert_param(IS_MMC_ERASE_TYPE(EraseType));
/* Check the coherence between start and end address */
if(end_add < start_add)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the end address is not out of range of device memory */
if(end_add > (hmmc->MmcCard.LogBlockNbr))
{
hmmc->ErrorCode |= HAL_MMC_ERROR_ADDR_OUT_OF_RANGE;
return HAL_ERROR;
}
/* Check if the card command class supports erase command */
if(((hmmc->MmcCard.Class) & SDMMC_CCCC_ERASE) == 0U)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_REQUEST_NOT_APPLICABLE;
return HAL_ERROR;
}
/* Check the state of the driver */
if(hmmc->State == HAL_MMC_STATE_READY)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Check that the card is not locked */
if((SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1) & SDMMC_CARD_LOCKED) == SDMMC_CARD_LOCKED)
{
hmmc->ErrorCode |= HAL_MMC_ERROR_LOCK_UNLOCK_FAILED;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
/* In case of low capacity card, the address is not block number but bytes */
if ((hmmc->MmcCard.CardType) != MMC_HIGH_CAPACITY_CARD)
{
start_add *= 512U;
end_add *= 512U;
}
/* Send CMD35 MMC_ERASE_GRP_START with start address as argument */
errorstate = SDMMC_CmdEraseStartAdd(hmmc->Instance, start_add);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Send CMD36 MMC_ERASE_GRP_END with end address as argument */
errorstate = SDMMC_CmdEraseEndAdd(hmmc->Instance, end_add);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Send CMD38 ERASE with erase type as argument */
errorstate = SDMMC_CmdErase(hmmc->Instance, EraseType);
if(errorstate == HAL_MMC_ERROR_NONE)
{
if ((EraseType == HAL_MMC_SECURE_ERASE) || (EraseType == HAL_MMC_SECURE_TRIM_STEP2))
{
/* Wait that the device is ready by checking the D0 line */
while((!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_BUSYD0END)) && (errorstate == HAL_MMC_ERROR_NONE))
{
if((HAL_GetTick()-tickstart) >= SDMMC_MAXERASETIMEOUT)
{
errorstate = HAL_MMC_ERROR_TIMEOUT;
}
}
/* Clear the flag corresponding to end D0 bus line */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_BUSYD0END);
}
}
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
/* Manage errors */
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
if(errorstate != HAL_MMC_ERROR_TIMEOUT)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
else
{
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Perform sanitize operation on the device.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_Sanitize(MMC_HandleTypeDef *hmmc)
{
uint32_t errorstate, response = 0U, count;
uint32_t tickstart = HAL_GetTick();
/* Check the state of the driver */
if(hmmc->State == HAL_MMC_STATE_READY)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Index : 165 - Value : 0x01 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03A50100U);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Wait that the device is ready by checking the D0 line */
while((!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_BUSYD0END)) && (errorstate == HAL_MMC_ERROR_NONE))
{
if((HAL_GetTick()-tickstart) >= SDMMC_MAXERASETIMEOUT)
{
errorstate = HAL_MMC_ERROR_TIMEOUT;
}
}
/* Clear the flag corresponding to end D0 bus line */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_BUSYD0END);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_GENERAL_UNKNOWN_ERR;
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
/* Manage errors */
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
if(errorstate != HAL_MMC_ERROR_TIMEOUT)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
else
{
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Configure the Secure Removal Type (SRT) in the Extended CSD register.
* @note This API should be followed by a check on the card state through
* HAL_MMC_GetCardState().
* @param hmmc Pointer to MMC handle
* @param SRTMode Specifies the type of erase to be performed
* This parameter can be one of the following values:
* @arg HAL_MMC_SRT_ERASE Information removed by an erase
* @arg HAL_MMC_SRT_WRITE_CHAR_ERASE Information removed by an overwriting with a character followed by an erase
* @arg HAL_MMC_SRT_WRITE_CHAR_COMPL_RANDOM Information removed by an overwriting with a character, its complement then a random character
* @arg HAL_MMC_SRT_VENDOR_DEFINED Information removed using a vendor defined
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_ConfigSecRemovalType(MMC_HandleTypeDef *hmmc, uint32_t SRTMode)
{
uint32_t srt, errorstate, response = 0U, count;
/* Check the erase type value is correct */
assert_param(IS_MMC_SRT_TYPE(SRTMode));
/* Check the state of the driver */
if(hmmc->State == HAL_MMC_STATE_READY)
{
/* Get the supported values by the device */
if(HAL_MMC_GetSupportedSecRemovalType(hmmc, &srt) == HAL_OK)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Check the value passed as parameter is supported by the device */
if((SRTMode & srt) != 0U)
{
/* Index : 16 - Value : SRTMode */
srt |= ((POSITION_VAL(SRTMode)) << 4U);
errorstate = SDMMC_CmdSwitch(hmmc->Instance, (0x03100000U | (srt << 8U)));
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_GENERAL_UNKNOWN_ERR;
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
}
else
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
}
else
{
errorstate = SDMMC_ERROR_GENERAL_UNKNOWN_ERR;
}
/* Manage errors */
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Gets the supported values of the the Secure Removal Type (SRT).
* @param hmmc pointer to MMC handle
* @param SupportedSRT pointer for supported SRT value
* This parameter is a bit field of the following values:
* @arg HAL_MMC_SRT_ERASE Information removed by an erase
* @arg HAL_MMC_SRT_WRITE_CHAR_ERASE Information removed by an overwriting with a character followed by an erase
* @arg HAL_MMC_SRT_WRITE_CHAR_COMPL_RANDOM Information removed by an overwriting with a character, its complement then a random character
* @arg HAL_MMC_SRT_VENDOR_DEFINED Information removed using a vendor defined
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_GetSupportedSecRemovalType(MMC_HandleTypeDef *hmmc, uint32_t *SupportedSRT)
{
/* Check the state of the driver */
if(hmmc->State == HAL_MMC_STATE_READY)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Read field SECURE_REMOVAL_TYPE [16 = 4*4] of the Extended CSD register */
*SupportedSRT = (hmmc->Ext_CSD[4] & 0x0000000FU); /* Bits [3:0] of field 16 */
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Switch the device from Standby State to Sleep State.
* @param hmmc pointer to MMC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_SleepDevice(MMC_HandleTypeDef *hmmc)
{
uint32_t errorstate, sleep_timeout, timeout, count, response = 0U;
uint32_t tickstart = HAL_GetTick();
/* Check the state of the driver */
if(hmmc->State == HAL_MMC_STATE_READY)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Set the power-off notification to powered-on : Ext_CSD[34] = 1 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, (0x03220100U));
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
else
{
/* Set the power-off notification to sleep notification : Ext_CSD[34] = 4 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, (0x03220400U));
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Field SLEEP_NOTIFICATION_TIME [216] */
sleep_timeout = ((hmmc->Ext_CSD[(MMC_EXT_CSD_SLEEP_NOTIFICATION_TIME_INDEX/4)] >> MMC_EXT_CSD_SLEEP_NOTIFICATION_TIME_POS) & 0x000000FFU);
/* Sleep/Awake Timeout = 10<31>s * 2^SLEEP_NOTIFICATION_TIME, max value of SLEEP_NOTIFICATION_TIME is 0x17 */
/* In HAL, the tick interrupt occurs each ms */
timeout = (((1UL << (sleep_timeout & 0x1FU)) / 100U) + 1U);
/* Wait that the device is ready by checking the D0 line */
while((!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_BUSYD0END)) && (errorstate == HAL_MMC_ERROR_NONE))
{
if((HAL_GetTick() - tickstart) >= timeout)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
}
/* Clear the flag corresponding to end D0 bus line */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_BUSYD0END);
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
else
{
/* Switch the device in stand-by mode */
(void)SDMMC_CmdSelDesel(hmmc->Instance, 0U);
/* Field S_A_TIEMOUT [217] */
sleep_timeout = ((hmmc->Ext_CSD[(MMC_EXT_CSD_S_A_TIMEOUT_INDEX/4)] >> MMC_EXT_CSD_S_A_TIMEOUT_POS) & 0x000000FFU);
/* Sleep/Awake Timeout = 100ns * 2^S_A_TIMEOUT, max value of S_A_TIMEOUT is 0x17 */
/* In HAL, the tick interrupt occurs each ms */
timeout = (((1UL << (sleep_timeout & 0x1FU)) / 10000U) + 1U);
if (HAL_MMC_GetCardState(hmmc) == HAL_MMC_CARD_STANDBY)
{
/* Send CMD5 CMD_MMC_SLEEP_AWAKE with RCA and SLEEP as argument */
errorstate = SDMMC_CmdSleepMmc(hmmc->Instance, ((hmmc->MmcCard.RelCardAdd << 16U) | (0x1U << 15U)));
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Wait that the device is ready by checking the D0 line */
while((!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_BUSYD0END)) && (errorstate == HAL_MMC_ERROR_NONE))
{
if((HAL_GetTick() - tickstart) >= timeout)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
}
/* Clear the flag corresponding to end D0 bus line */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_BUSYD0END);
}
}
else
{
errorstate = SDMMC_ERROR_REQUEST_NOT_APPLICABLE;
}
}
}
else
{
/* Nothing to do */
}
}
}
}
}
else
{
/* Nothing to do */
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
/* Manage errors */
if (errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
if (errorstate != HAL_MMC_ERROR_TIMEOUT)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
else
{
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Switch the device from Sleep State to Standby State.
* @param hmmc pointer to MMC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MMC_AwakeDevice(MMC_HandleTypeDef *hmmc)
{
uint32_t errorstate, sleep_timeout, timeout, count, response = 0U;
uint32_t tickstart = HAL_GetTick();
/* Check the state of the driver */
if (hmmc->State == HAL_MMC_STATE_READY)
{
/* Change State */
hmmc->State = HAL_MMC_STATE_BUSY;
/* Field S_A_TIEMOUT [217] */
sleep_timeout = ((hmmc->Ext_CSD[(MMC_EXT_CSD_S_A_TIMEOUT_INDEX/4)] >> MMC_EXT_CSD_S_A_TIMEOUT_POS) & 0x000000FFU);
/* Sleep/Awake Timeout = 100ns * 2^S_A_TIMEOUT, max value of S_A_TIMEOUT is 0x17 */
/* In HAL, the tick interrupt occurs each ms */
timeout = (((1UL << (sleep_timeout & 0x1FU)) / 10000U) + 1U);
/* Send CMD5 CMD_MMC_SLEEP_AWAKE with RCA and AWAKE as argument */
errorstate = SDMMC_CmdSleepMmc(hmmc->Instance, (hmmc->MmcCard.RelCardAdd << 16U));
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Wait that the device is ready by checking the D0 line */
while ((!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_BUSYD0END)) && (errorstate == HAL_MMC_ERROR_NONE))
{
if((HAL_GetTick() - tickstart) >= timeout)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
}
/* Clear the flag corresponding to end D0 bus line */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_FLAG_BUSYD0END);
if (errorstate == HAL_MMC_ERROR_NONE)
{
if (HAL_MMC_GetCardState(hmmc) == HAL_MMC_CARD_STANDBY)
{
/* Switch the device in transfer mode */
errorstate = SDMMC_CmdSelDesel(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if (errorstate == HAL_MMC_ERROR_NONE)
{
if (HAL_MMC_GetCardState(hmmc) == HAL_MMC_CARD_TRANSFER)
{
/* Set the power-off notification to powered-on : Ext_CSD[34] = 1 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, (0x03220100U));
if (errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else if (errorstate == HAL_MMC_ERROR_NONE)
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
}
else
{
/* Nothing to do */
}
}
}
else
{
errorstate = SDMMC_ERROR_REQUEST_NOT_APPLICABLE;
}
}
}
else
{
errorstate = SDMMC_ERROR_REQUEST_NOT_APPLICABLE;
}
}
}
/* Change State */
hmmc->State = HAL_MMC_STATE_READY;
/* Manage errors */
if (errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
if (errorstate != HAL_MMC_ERROR_TIMEOUT)
{
return HAL_ERROR;
}
else
{
return HAL_TIMEOUT;
}
}
else
{
return HAL_OK;
}
}
else
{
return HAL_BUSY;
}
}
#endif /* defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) */
/**
* @}
*/
/**
* @}
*/
/* Private function ----------------------------------------------------------*/
/** @addtogroup MMC_Private_Functions
* @{
*/
#if !defined(STM32L4P5xx) && !defined(STM32L4Q5xx) && !defined(STM32L4R5xx) && !defined(STM32L4R7xx) && !defined(STM32L4R9xx) && !defined(STM32L4S5xx) && !defined(STM32L4S7xx) && !defined(STM32L4S9xx)
/**
* @brief DMA MMC transmit process complete callback
* @param hdma DMA handle
* @retval None
*/
static void MMC_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
MMC_HandleTypeDef* hmmc = (MMC_HandleTypeDef* )(hdma->Parent);
/* Enable DATAEND Interrupt */
__HAL_MMC_ENABLE_IT(hmmc, (SDMMC_IT_DATAEND));
}
/**
* @brief DMA MMC receive process complete callback
* @param hdma DMA handle
* @retval None
*/
static void MMC_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
MMC_HandleTypeDef* hmmc = (MMC_HandleTypeDef* )(hdma->Parent);
uint32_t errorstate;
/* Send stop command in multiblock write */
if(hmmc->Context == (MMC_CONTEXT_READ_MULTIPLE_BLOCK | MMC_CONTEXT_DMA))
{
errorstate = SDMMC_CmdStopTransfer(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
/* Disable the DMA transfer for transmit request by setting the DMAEN bit
in the MMC DCTRL register */
hmmc->Instance->DCTRL &= (uint32_t)~((uint32_t)SDMMC_DCTRL_DMAEN);
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->RxCpltCallback(hmmc);
#else
HAL_MMC_RxCpltCallback(hmmc);
#endif
}
/**
* @brief DMA MMC communication error callback
* @param hdma DMA handle
* @retval None
*/
static void MMC_DMAError(DMA_HandleTypeDef *hdma)
{
MMC_HandleTypeDef* hmmc = (MMC_HandleTypeDef* )(hdma->Parent);
HAL_MMC_CardStateTypeDef CardState;
uint32_t RxErrorCode, TxErrorCode;
RxErrorCode = hmmc->hdmarx->ErrorCode;
TxErrorCode = hmmc->hdmatx->ErrorCode;
if((RxErrorCode == HAL_DMA_ERROR_TE) || (TxErrorCode == HAL_DMA_ERROR_TE))
{
/* Clear All flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
/* Disable All interrupts */
__HAL_MMC_DISABLE_IT(hmmc, SDMMC_IT_DATAEND | SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT|\
SDMMC_IT_TXUNDERR| SDMMC_IT_RXOVERR);
hmmc->ErrorCode |= HAL_MMC_ERROR_DMA;
CardState = HAL_MMC_GetCardState(hmmc);
if((CardState == HAL_MMC_CARD_RECEIVING) || (CardState == HAL_MMC_CARD_SENDING))
{
hmmc->ErrorCode |= SDMMC_CmdStopTransfer(hmmc->Instance);
}
hmmc->State= HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
}
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
/**
* @brief DMA MMC Tx Abort callback
* @param hdma DMA handle
* @retval None
*/
static void MMC_DMATxAbort(DMA_HandleTypeDef *hdma)
{
MMC_HandleTypeDef* hmmc = (MMC_HandleTypeDef* )(hdma->Parent);
HAL_MMC_CardStateTypeDef CardState;
if(hmmc->hdmatx != NULL)
{
hmmc->hdmatx = NULL;
}
/* All DMA channels are aborted */
if(hmmc->hdmarx == NULL)
{
CardState = HAL_MMC_GetCardState(hmmc);
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
if((CardState == HAL_MMC_CARD_RECEIVING) || (CardState == HAL_MMC_CARD_SENDING))
{
hmmc->ErrorCode |= SDMMC_CmdStopTransfer(hmmc->Instance);
if(hmmc->ErrorCode != HAL_MMC_ERROR_NONE)
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->AbortCpltCallback(hmmc);
#else
HAL_MMC_AbortCallback(hmmc);
#endif
}
else
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
}
}
/**
* @brief DMA MMC Rx Abort callback
* @param hdma DMA handle
* @retval None
*/
static void MMC_DMARxAbort(DMA_HandleTypeDef *hdma)
{
MMC_HandleTypeDef* hmmc = (MMC_HandleTypeDef* )(hdma->Parent);
HAL_MMC_CardStateTypeDef CardState;
if(hmmc->hdmarx != NULL)
{
hmmc->hdmarx = NULL;
}
/* All DMA channels are aborted */
if(hmmc->hdmatx == NULL)
{
CardState = HAL_MMC_GetCardState(hmmc);
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
hmmc->State = HAL_MMC_STATE_READY;
hmmc->Context = MMC_CONTEXT_NONE;
if((CardState == HAL_MMC_CARD_RECEIVING) || (CardState == HAL_MMC_CARD_SENDING))
{
hmmc->ErrorCode |= SDMMC_CmdStopTransfer(hmmc->Instance);
if(hmmc->ErrorCode != HAL_MMC_ERROR_NONE)
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->AbortCpltCallback(hmmc);
#else
HAL_MMC_AbortCallback(hmmc);
#endif
}
else
{
#if defined (USE_HAL_MMC_REGISTER_CALLBACKS) && (USE_HAL_MMC_REGISTER_CALLBACKS == 1U)
hmmc->ErrorCallback(hmmc);
#else
HAL_MMC_ErrorCallback(hmmc);
#endif
}
}
}
}
#endif
/**
* @brief Initializes the mmc card.
* @param hmmc Pointer to MMC handle
* @retval MMC Card error state
*/
static uint32_t MMC_InitCard(MMC_HandleTypeDef *hmmc)
{
HAL_MMC_CardCSDTypeDef CSD;
uint32_t errorstate;
uint16_t mmc_rca = 2U;
MMC_InitTypeDef Init;
/* Check the power State */
if(SDMMC_GetPowerState(hmmc->Instance) == 0U)
{
/* Power off */
return HAL_MMC_ERROR_REQUEST_NOT_APPLICABLE;
}
/* Send CMD2 ALL_SEND_CID */
errorstate = SDMMC_CmdSendCID(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
else
{
/* Get Card identification number data */
hmmc->CID[0U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
hmmc->CID[1U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP2);
hmmc->CID[2U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP3);
hmmc->CID[3U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP4);
}
/* Send CMD3 SET_REL_ADDR with RCA = 2 (should be greater than 1) */
/* MMC Card publishes its RCA. */
errorstate = SDMMC_CmdSetRelAddMmc(hmmc->Instance, mmc_rca);
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
/* Get the MMC card RCA */
hmmc->MmcCard.RelCardAdd = mmc_rca;
/* Send CMD9 SEND_CSD with argument as card's RCA */
errorstate = SDMMC_CmdSendCSD(hmmc->Instance, (uint32_t)(hmmc->MmcCard.RelCardAdd << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
else
{
/* Get Card Specific Data */
hmmc->CSD[0U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
hmmc->CSD[1U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP2);
hmmc->CSD[2U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP3);
hmmc->CSD[3U] = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP4);
}
/* Get the Card Class */
hmmc->MmcCard.Class = (SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP2) >> 20U);
/* Select the Card */
errorstate = SDMMC_CmdSelDesel(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
/* Get CSD parameters */
if (HAL_MMC_GetCardCSD(hmmc, &CSD) != HAL_OK)
{
return hmmc->ErrorCode;
}
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
/* Get Extended CSD parameters */
if (HAL_MMC_GetCardExtCSD(hmmc, hmmc->Ext_CSD, SDMMC_DATATIMEOUT) != HAL_OK)
{
return hmmc->ErrorCode;
}
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
/* Configure the SDMMC peripheral */
Init = hmmc->Init;
Init.BusWide = SDMMC_BUS_WIDE_1B;
(void)SDMMC_Init(hmmc->Instance, Init);
/* All cards are initialized */
return HAL_MMC_ERROR_NONE;
}
/**
* @brief Enquires cards about their operating voltage and configures clock
* controls and stores MMC information that will be needed in future
* in the MMC handle.
* @param hmmc Pointer to MMC handle
* @retval error state
*/
static uint32_t MMC_PowerON(MMC_HandleTypeDef *hmmc)
{
__IO uint32_t count = 0U;
uint32_t response = 0U, validvoltage = 0U;
uint32_t errorstate;
/* CMD0: GO_IDLE_STATE */
errorstate = SDMMC_CmdGoIdleState(hmmc->Instance);
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
while(validvoltage == 0U)
{
if(count++ == SDMMC_MAX_VOLT_TRIAL)
{
return HAL_MMC_ERROR_INVALID_VOLTRANGE;
}
/* SEND CMD1 APP_CMD with voltage range as argument */
errorstate = SDMMC_CmdOpCondition(hmmc->Instance, MMC_VOLTAGE_RANGE);
if(errorstate != HAL_MMC_ERROR_NONE)
{
return HAL_MMC_ERROR_UNSUPPORTED_FEATURE;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
/* Get operating voltage*/
validvoltage = (((response >> 31U) == 1U) ? 1U : 0U);
}
/* When power routine is finished and command returns valid voltage */
if (((response & (0xFF000000U)) >> 24) == 0xC0U)
{
hmmc->MmcCard.CardType = MMC_HIGH_CAPACITY_CARD;
}
else
{
hmmc->MmcCard.CardType = MMC_LOW_CAPACITY_CARD;
}
return HAL_MMC_ERROR_NONE;
}
/**
* @brief Turns the SDMMC output signals off.
* @param hmmc Pointer to MMC handle
* @retval None
*/
static void MMC_PowerOFF(MMC_HandleTypeDef *hmmc)
{
/* Set Power State to OFF */
(void)SDMMC_PowerState_OFF(hmmc->Instance);
}
/**
* @brief Returns the current card's status.
* @param hmmc Pointer to MMC handle
* @param pCardStatus pointer to the buffer that will contain the MMC card
* status (Card Status register)
* @retval error state
*/
static uint32_t MMC_SendStatus(MMC_HandleTypeDef *hmmc, uint32_t *pCardStatus)
{
uint32_t errorstate;
if(pCardStatus == NULL)
{
return HAL_MMC_ERROR_PARAM;
}
/* Send Status command */
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(hmmc->MmcCard.RelCardAdd << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
return errorstate;
}
/* Get MMC card status */
*pCardStatus = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
return HAL_MMC_ERROR_NONE;
}
/**
* @brief Reads extended CSD register to get the sectors number of the device
* @param hmmc Pointer to MMC handle
* @param pFieldData Pointer to the read buffer
* @param FieldIndex Index of the field to be read
* @param Timeout Specify timeout value
* @retval HAL status
*/
static HAL_StatusTypeDef MMC_ReadExtCSD(MMC_HandleTypeDef *hmmc, uint32_t *pFieldData, uint16_t FieldIndex, uint32_t Timeout)
{
SDMMC_DataInitTypeDef config;
uint32_t errorstate;
uint32_t tickstart = HAL_GetTick();
uint32_t count;
uint32_t i = 0;
uint32_t tmp_data;
hmmc->ErrorCode = HAL_MMC_ERROR_NONE;
/* Initialize data control register */
hmmc->Instance->DCTRL = 0;
/* Configure the MMC DPSM (Data Path State Machine) */
config.DataTimeOut = SDMMC_DATATIMEOUT;
config.DataLength = 512;
config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B;
config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC;
config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK;
config.DPSM = SDMMC_DPSM_ENABLE;
(void)SDMMC_ConfigData(hmmc->Instance, &config);
/* Set Block Size for Card */
errorstate = SDMMC_CmdSendEXTCSD(hmmc->Instance, 0);
if(errorstate != HAL_MMC_ERROR_NONE)
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= errorstate;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
/* Poll on SDMMC flags */
while(!__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND))
{
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXFIFOHF))
{
/* Read data from SDMMC Rx FIFO */
for(count = 0U; count < 8U; count++)
{
tmp_data = SDMMC_ReadFIFO(hmmc->Instance);
/* eg : SEC_COUNT : FieldIndex = 212 => i+count = 53 */
/* DEVICE_TYPE : FieldIndex = 196 => i+count = 49 */
if ((i + count) == ((uint32_t)FieldIndex/4U))
{
*pFieldData = tmp_data;
}
}
i += 8U;
}
if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_TIMEOUT;
hmmc->State= HAL_MMC_STATE_READY;
return HAL_TIMEOUT;
}
}
/* Get error state */
if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DTIMEOUT))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_TIMEOUT;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_DCRCFAIL))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_DATA_CRC_FAIL;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else if(__HAL_MMC_GET_FLAG(hmmc, SDMMC_FLAG_RXOVERR))
{
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_FLAGS);
hmmc->ErrorCode |= HAL_MMC_ERROR_RX_OVERRUN;
hmmc->State = HAL_MMC_STATE_READY;
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16));
if(errorstate != HAL_MMC_ERROR_NONE)
{
hmmc->ErrorCode |= errorstate;
}
/* Clear all the static flags */
__HAL_MMC_CLEAR_FLAG(hmmc, SDMMC_STATIC_DATA_FLAGS);
hmmc->State = HAL_MMC_STATE_READY;
return HAL_OK;
}
/**
* @brief Wrap up reading in non-blocking mode.
* @param hmmc pointer to a MMC_HandleTypeDef structure that contains
* the configuration information.
* @retval None
*/
static void MMC_Read_IT(MMC_HandleTypeDef *hmmc)
{
uint32_t count, data, dataremaining;
uint8_t* tmp;
tmp = hmmc->pRxBuffPtr;
dataremaining = hmmc->RxXferSize;
if (dataremaining > 0U)
{
/* Read data from SDMMC Rx FIFO */
for(count = 0U; count < 8U; count++)
{
data = SDMMC_ReadFIFO(hmmc->Instance);
*tmp = (uint8_t)(data & 0xFFU);
tmp++;
dataremaining--;
*tmp = (uint8_t)((data >> 8U) & 0xFFU);
tmp++;
dataremaining--;
*tmp = (uint8_t)((data >> 16U) & 0xFFU);
tmp++;
dataremaining--;
*tmp = (uint8_t)((data >> 24U) & 0xFFU);
tmp++;
dataremaining--;
}
hmmc->pRxBuffPtr = tmp;
hmmc->RxXferSize = dataremaining;
}
}
/**
* @brief Wrap up writing in non-blocking mode.
* @param hmmc pointer to a MMC_HandleTypeDef structure that contains
* the configuration information.
* @retval None
*/
static void MMC_Write_IT(MMC_HandleTypeDef *hmmc)
{
uint32_t count, data, dataremaining;
uint8_t* tmp;
tmp = hmmc->pTxBuffPtr;
dataremaining = hmmc->TxXferSize;
if (dataremaining > 0U)
{
/* Write data to SDMMC Tx FIFO */
for(count = 0U; count < 8U; count++)
{
data = (uint32_t)(*tmp);
tmp++;
dataremaining--;
data |= ((uint32_t)(*tmp) << 8U);
tmp++;
dataremaining--;
data |= ((uint32_t)(*tmp) << 16U);
tmp++;
dataremaining--;
data |= ((uint32_t)(*tmp) << 24U);
tmp++;
dataremaining--;
(void)SDMMC_WriteFIFO(hmmc->Instance, &data);
}
hmmc->pTxBuffPtr = tmp;
hmmc->TxXferSize = dataremaining;
}
}
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
/**
* @brief Switches the MMC card to high speed mode.
* @param hmmc MMC handle
* @param state State of high speed mode
* @retval MMC Card error state
*/
static uint32_t MMC_HighSpeed(MMC_HandleTypeDef *hmmc, FunctionalState state)
{
uint32_t errorstate = HAL_MMC_ERROR_NONE;
uint32_t response = 0U, count;
uint32_t sdmmc_clk;
SDMMC_InitTypeDef Init;
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_BUSSPEED) != 0U) && (state == DISABLE))
{
errorstate = MMC_PwrClassUpdate(hmmc, (hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS), SDMMC_SPEED_MODE_DEFAULT);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 185 - Value : 0 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B90000U);
}
}
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_BUSSPEED) == 0U) && (state != DISABLE))
{
errorstate = MMC_PwrClassUpdate(hmmc, (hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS), SDMMC_SPEED_MODE_HIGH);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 185 - Value : 1 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B90100U);
}
}
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
else
{
/* Configure high speed */
Init.ClockEdge = hmmc->Init.ClockEdge;
Init.ClockPowerSave = hmmc->Init.ClockPowerSave;
Init.BusWide = (hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS);
Init.HardwareFlowControl = hmmc->Init.HardwareFlowControl;
if (state == DISABLE)
{
Init.ClockDiv = hmmc->Init.ClockDiv;
(void)SDMMC_Init(hmmc->Instance, Init);
CLEAR_BIT(hmmc->Instance->CLKCR, SDMMC_CLKCR_BUSSPEED);
}
else
{
/* High Speed Clock should be less or equal to 52MHz*/
sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC1);
if (sdmmc_clk == 0U)
{
errorstate = SDMMC_ERROR_INVALID_PARAMETER;
}
else
{
Init.ClockDiv = sdmmc_clk/(2U*MMC_HIGH_SPEED_FREQ);
(void)SDMMC_Init(hmmc->Instance, Init);
SET_BIT(hmmc->Instance->CLKCR, SDMMC_CLKCR_BUSSPEED);
}
}
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
return errorstate;
}
/**
* @brief Switches the MMC card to Double Data Rate (DDR) mode.
* @param hmmc MMC handle
* @param state State of DDR mode
* @retval MMC Card error state
*/
static uint32_t MMC_DDR_Mode(MMC_HandleTypeDef *hmmc, FunctionalState state)
{
uint32_t errorstate = HAL_MMC_ERROR_NONE;
uint32_t response = 0U, count;
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_DDR) != 0U) && (state == DISABLE))
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS_0) != 0U)
{
errorstate = MMC_PwrClassUpdate(hmmc, SDMMC_BUS_WIDE_4B, SDMMC_SPEED_MODE_HIGH);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 183 - Value : 1 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70100U);
}
}
else
{
errorstate = MMC_PwrClassUpdate(hmmc, SDMMC_BUS_WIDE_8B, SDMMC_SPEED_MODE_HIGH);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 183 - Value : 2 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70200U);
}
}
}
if (((hmmc->Instance->CLKCR & SDMMC_CLKCR_DDR) == 0U) && (state != DISABLE))
{
if ((hmmc->Instance->CLKCR & SDMMC_CLKCR_WIDBUS_0) != 0U)
{
errorstate = MMC_PwrClassUpdate(hmmc, SDMMC_BUS_WIDE_4B, SDMMC_SPEED_MODE_DDR);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 183 - Value : 5 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70500U);
}
}
else
{
errorstate = MMC_PwrClassUpdate(hmmc, SDMMC_BUS_WIDE_8B, SDMMC_SPEED_MODE_DDR);
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* Index : 183 - Value : 6 */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, 0x03B70600U);
}
}
}
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
else
{
/* Configure DDR mode */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
if (state == DISABLE)
{
CLEAR_BIT(hmmc->Instance->CLKCR, SDMMC_CLKCR_DDR);
}
else
{
SET_BIT(hmmc->Instance->CLKCR, SDMMC_CLKCR_DDR);
}
}
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
return errorstate;
}
#endif
/**
* @brief Update the power class of the device.
* @param hmmc MMC handle
* @param Wide Wide of MMC bus
* @param Speed Speed of the MMC bus
* @retval MMC Card error state
*/
static uint32_t MMC_PwrClassUpdate(MMC_HandleTypeDef *hmmc, uint32_t Wide, uint32_t Speed)
{
uint32_t count;
uint32_t response = 0U;
uint32_t errorstate = HAL_MMC_ERROR_NONE;
uint32_t power_class, supported_pwr_class;
if((Wide == SDMMC_BUS_WIDE_8B) || (Wide == SDMMC_BUS_WIDE_4B))
{
power_class = 0U; /* Default value after power-on or software reset */
/* Read the PowerClass field of the Extended CSD register */
if(MMC_ReadExtCSD(hmmc, &power_class, 187, SDMMC_DATATIMEOUT) != HAL_OK) /* Field POWER_CLASS [187] */
{
errorstate = SDMMC_ERROR_GENERAL_UNKNOWN_ERR;
}
else
{
power_class = ((power_class >> 24U) & 0x000000FFU);
}
/* Get the supported PowerClass field of the Extended CSD register */
#if defined(STM32L4P5xx) || defined(STM32L4Q5xx) || defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
if (Speed == SDMMC_SPEED_MODE_DDR)
{
/* Field PWR_CL_DDR_52_xxx [238 or 239] */
supported_pwr_class = ((hmmc->Ext_CSD[(MMC_EXT_CSD_PWR_CL_DDR_52_INDEX/4)] >> MMC_EXT_CSD_PWR_CL_DDR_52_POS) & 0x000000FFU);
}
else if (Speed == SDMMC_SPEED_MODE_HIGH)
{
/* Field PWR_CL_52_xxx [200 or 202] */
supported_pwr_class = ((hmmc->Ext_CSD[(MMC_EXT_CSD_PWR_CL_52_INDEX/4)] >> MMC_EXT_CSD_PWR_CL_52_POS) & 0x000000FFU);
}
else
#else /* Prevent compiler warning in case of -Wextra */
UNUSED(Speed);
#endif
{
/* Field PWR_CL_26_xxx [201 or 203] */
supported_pwr_class = ((hmmc->Ext_CSD[(MMC_EXT_CSD_PWR_CL_26_INDEX/4)] >> MMC_EXT_CSD_PWR_CL_26_POS) & 0x000000FFU);
}
if(errorstate == HAL_MMC_ERROR_NONE)
{
if(Wide == SDMMC_BUS_WIDE_8B)
{
/* Bit [7:4] : power class for 8-bits bus configuration - Bit [3:0] : power class for 4-bits bus configuration */
supported_pwr_class = (supported_pwr_class >> 4U);
}
if ((power_class & 0x0FU) != (supported_pwr_class & 0x0FU))
{
/* Need to change current power class */
errorstate = SDMMC_CmdSwitch(hmmc->Instance, (0x03BB0000U | ((supported_pwr_class & 0x0FU) << 8U)));
if(errorstate == HAL_MMC_ERROR_NONE)
{
/* While card is not ready for data and trial number for sending CMD13 is not exceeded */
count = SDMMC_MAX_TRIAL;
do
{
errorstate = SDMMC_CmdSendStatus(hmmc->Instance, (uint32_t)(((uint32_t)hmmc->MmcCard.RelCardAdd) << 16U));
if(errorstate != HAL_MMC_ERROR_NONE)
{
break;
}
/* Get command response */
response = SDMMC_GetResponse(hmmc->Instance, SDMMC_RESP1);
count--;
}while(((response & 0x100U) == 0U) && (count != 0U));
/* Check the status after the switch command execution */
if ((count != 0U) && (errorstate == HAL_MMC_ERROR_NONE))
{
/* Check the bit SWITCH_ERROR of the device status */
if ((response & 0x80U) != 0U)
{
errorstate = SDMMC_ERROR_UNSUPPORTED_FEATURE;
}
}
else if (count == 0U)
{
errorstate = SDMMC_ERROR_TIMEOUT;
}
else
{
/* Nothing to do */
}
}
}
}
}
return errorstate;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_MMC_MODULE_ENABLED */
#endif /* SDMMC1 */