#include "anemometer_dev.h" #include "FreeRTOS.h" #include "filter.h" #include "inflash.h" #include "uart_dev.h" #include "fdacoefs.h" #include "sht30.h" #include "hp203b.h" #define AVE_TIME 600 //滑动平均时间,秒,最大600 uint32_t run_time_us; // fft检验波形有效性 arm_rfft_fast_instance_f32 s; #define FFT_DATA_LEN 256 // 浮点数buf float32_t rfft_float_buf[FFT_DATA_LEN]; // fft结果 float32_t fft_out_f32[ADC_VAL_LEN] = {0}; // int16_t adc_val[ADC_VAL_LEN]; int16_t adc_val1[ADC_VAL_LEN]; #define AV_SPEED_LEN 5 float32_t speed[AV_SPEED_LEN]={0}; float32_t angle[AV_SPEED_LEN]={0}; float32_t speedx[AV_SPEED_LEN]={0}; float32_t speedy[AV_SPEED_LEN]={0}; uint32_t speedi = 0; float32_t av_speed; float32_t av_angle; float32_t av_speedx= 0; float32_t av_speedy=0; Weather_param weather_info={0x00}; mcs_para g_stMcs_Para={0x00}; void update_mcs_param(float new_wind_speed, float new_wind_dirction); float32_t max_val_f32; int32_t max_val_index_f32; // 多项式插值 // 返回值是最大值 float32_t find_maxVal_by_interpolation(float32_t a,float32_t b,float32_t c) { float32_t d1=0; //到达极值点的时间Xmax d1 = (a-c)/2.0f/(a-2.0f*b+c); return 0.5f*a*d1*(d1-1.0f)-b*(d1-1.0f)*(d1+1.0f)+0.5f*c*d1*(d1+1.0f); } // 余弦插值找最大值所在的位置 // 返回值是相位 float32_t find_maxValPosition_by_sinInterpolation(float32_t a,float32_t b,float32_t c) { // sin 插值 寻找最大值 float32_t w_val,sin_val,y_val; b=b+0.0000001f; w_val = acosf((a+c)/2.0f/b); sin_val = sinf(w_val)+0.0000001f; y_val = atanf((a-c)/2.0f/b/sin_val); // if(isnan(w_val)||isnan(sin_val)||isnan(y_val)) // { // term_printf("isnan \r\n"); // // } return (0.0f-y_val)/(w_val+0.0000001f); } float32_t RSSI; float32_t cal_tof(q15_t* x,uint32_t len) { q15_t max_val,dc_offset; float32_t echo_p = 0,echo_dt = 0; uint32_t max_val_p; uint32_t i=0;//stop_position = 0; static uint32_t fft_200khz_pos; // 计算直流分量 因为数据前端是没有回波的 计算50个数据求平均值 获取直流分量 arm_mean_q15(x,50,&dc_offset); // 信号减去直流分量 arm_offset_q15(x,-dc_offset,x,len); // fft 中 200khz 所在的位置。 fft_200khz_pos=(uint32_t)roundf((0.2f/(ADC_SAMP_RATE_MHz/FFT_DATA_LEN))); // 查找数组中的最大值和最大值所在的索引 arm_max_q15(x,len,&max_val,&max_val_p); // 最大值前后128个点数据的地址这里预防数组越界 q15_t* fft_data_q15_buf; uint32_t fft_data_add; if(max_val_p>=FFT_DATA_LEN/2) fft_data_add=max_val_p-FFT_DATA_LEN/2; else fft_data_add = 0; // 找到最大值前128个点的地址 fft_data_q15_buf = &(x[fft_data_add]); // 转换成浮点数 arm_q15_to_float(fft_data_q15_buf,rfft_float_buf,FFT_DATA_LEN); // fft进行转换。 arm_rfft_fast_f32(&s,rfft_float_buf,fft_out_f32,0); // 对fft结果取模 arm_cmplx_mag_f32(fft_out_f32,rfft_float_buf,FFT_DATA_LEN); // 统计200khz 附近的信号强度 RSSI = rfft_float_buf[fft_200khz_pos-2]+rfft_float_buf[fft_200khz_pos-1]+ rfft_float_buf[fft_200khz_pos]+rfft_float_buf[fft_200khz_pos+1]+rfft_float_buf[fft_200khz_pos+2]; // 如果RSSI小于 if(RSSI<0.2) return -1; // 大宇换能器参数 开始 // 最大值的0.18倍 uint16_t max_val_zero_1R5 = (max_val*15/100); // 最大值的0.45倍 uint16_t max_val_zero_4R5 = (max_val*45/100); // 最大值的0.8倍 uint16_t max_val_zero_8R0 = (max_val*80/100); // 大宇换能器参数 // // 无锡电声换能器参数 // // 最大值的0.18倍 // uint16_t max_val_zero_1R5 = (max_val*10/100); // // 最大值的0.45倍 // uint16_t max_val_zero_4R5 = (max_val*35/100); // // 最大值的0.8倍 // uint16_t max_val_zero_8R0 = (max_val*65/100); //如果最大值位置大于8个周波 则从最大值前前8周波位置开始寻找起始波形。 // 优化的地方,从最大值位置开始找到达波,可以最大限度排除偶然噪声干扰, // 因为噪声在波形到达出 噪声不是很大 //优化性能,如果不需要则从数组0位置开始寻找其实波形 if(max_val_p>=(uint32_t)(8*ADC_SAMP_RATE_MHz/DRIVE_FREQ_MHz)) { i = max_val_p-(uint32_t)(8*ADC_SAMP_RATE_MHz/DRIVE_FREQ_MHz); }else { i = 0; } // 在最大值前寻找起始波形 for( ; i < max_val_p ; i++) { // 建议判断顶点,但是容易遇到偶然数据异常 类似于 28 29 28 30 29 28这种情况 // if( x[i-1] < x[i] && x[i]> x[i+1] ) // 排除以上数据异常情况,但是有可能就无法检测到30 这个顶点。 // 故需要检测下一个周期的顶点,然后再减去一个周期的时间。 if( x[i-2]=x[i+1] && x[i+1]>x[i+2]) { // 减去偏置电压 //temp_val_zero = arr[i]-2048; // 判断顶点是否在 15%-%45之间。 if(x[i] >= max_val_zero_1R5 && x[i] <= max_val_zero_4R5 ) { // 如果找到 函数退出 //echo_dt = (x[i-1]-x[i+1])/2.0/(x[i-1]-2*x[i]+x[i+1]); echo_dt = find_maxValPosition_by_sinInterpolation(x[i-1],x[i],x[i+1]); echo_p = (float32_t)i+echo_dt-0*(float32_t)(ADC_SAMP_RATE_MHz/DRIVE_FREQ_MHz); return echo_p; } // 如果15% ~45%之间的数据未找到,则找45-80%的顶点。 // 判断顶点是否在 45% -- 80% 之间 if(x[i] >= max_val_zero_4R5 && x[i] <= max_val_zero_8R0) { // 如果找到 函数推出 //echo_dt = (x[i-1]-x[i+1])/2.0/(x[i-1]-2*x[i]+x[i+1]); echo_dt = find_maxValPosition_by_sinInterpolation(x[i-1],x[i],x[i+1]); // 换算成第二个顶点的位置。 echo_p = (float32_t)i+echo_dt - 1*(float32_t)(ADC_SAMP_RATE_MHz/DRIVE_FREQ_MHz); return echo_p; } } } // term_printf("bad wave of echo signal \r\n"); return -1; } /* C B A 0 0 0 X0 0 0 1 X1 0 1 0 X2 0 1 1 X3 1 0 0 X4 1 0 1 X5 */ void change_channel(uint32_t channel) { // 复位全部通道IO HAL_GPIO_WritePin(GPIOC, GPIO_PWM_C_Pin|GPIO_PWM_B_Pin|GPIO_PWM_A_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOC, GPIO_RX_A_Pin|GPIO_RX_B_Pin|GPIO_RX_C_Pin, GPIO_PIN_RESET); switch(channel) { case 0x01: // N tx S rx //HAL_GPIO_WritePin(GPIOC, GPIO_RX_A_Pin, GPIO_PIN_SET); // 接收通道 HAL_GPIO_WritePin(GPIOC, GPIO_RX_A_Pin, GPIO_PIN_SET); break; case 0x02: // N rx S tx HAL_GPIO_WritePin(GPIOC, GPIO_PWM_A_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC, GPIO_RX_B_Pin, GPIO_PIN_SET); break; case 0x03: // W tx E rx HAL_GPIO_WritePin(GPIOC, GPIO_PWM_B_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC, GPIO_RX_A_Pin|GPIO_RX_B_Pin, GPIO_PIN_SET); break; case 0x04: // W rx E tx HAL_GPIO_WritePin(GPIOC, GPIO_PWM_A_Pin|GPIO_PWM_B_Pin, GPIO_PIN_SET); //HAL_GPIO_WritePin(GPIOC, GPIO_RX_A_Pin, GPIO_PIN_SET); break; } } void play_one_measure(int16_t* result_data,uint32_t len) { // 重新初始化PWM定时器 MX_TIM15_Init(); //MX_TIM6_Init(); // adc驱动定时器,保证每次使用前处于停止状态 HAL_TIM_Base_Stop(&htim6); // 计数器复位 __HAL_TIM_SET_COUNTER(&htim6,0); // 校准adc //HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); // adc dma初始化 HAL_ADC_Start_DMA(&hadc1,(uint32_t *)result_data,len); //禁止全局中断 // 停止定时器 __HAL_TIM_DISABLE(&htim7); // 重置计数器 __HAL_TIM_SET_COUNTER(&htim7,0); __set_PRIMASK(1); // 发送超声波驱动信号 HAL_TIM_PWM_Start(&htim15,TIM_CHANNEL_1); // 延时 REV_MUTE_DELAY us //HAL_GPIO_WritePin(GPIOC,GPIO_ACK_LED_Pin,0); // 启定时器 __HAL_TIM_ENABLE(&htim7); // 等待定时到达 while(__HAL_TIM_GET_COUNTER(&htim7)wind_c = DISTANCE/2.0f*(1.0f/tofx+1.0f/tofy); // // v = L*dtof/2/tofx/tofy/cos // if(direction == WIND_DIRECTION_X) // { // parm->wind_velocity_x = 0-DISTANCE*dtof/1.41422f/tofx/tofx; // //parm->wind_velocity_x = DISTANCE*c_dtof/1.41422/tofx/tofx; // } // else // { // parm->wind_velocity_y = DISTANCE*dtof/1.41422f/tofx/tofx; // //parm->wind_velocity_y = DISTANCE*c_dtof/1.41422/tofx/tofx; // } //} void wind_task(void const * argument) { int flag_init_msc_value = 1; arm_rfft_fast_init_f32(&s,FFT_DATA_LEN); for(;;) { __HAL_TIM_DISABLE(&htim16); // 采集X轴风速耗时 22ms,两轴采集完44ms __HAL_TIM_SET_COUNTER(&htim16,0); // 开启定时器,统计算法时间 __HAL_TIM_ENABLE(&htim16); // 通道1 通道2 测试南北风速 // 通道1发送 通道2接收 change_channel(0x01); // 等待通道切换稳定 // adc开启采集数据有个固定的延时,这里取消等待 //HAL_Delay(0); // 发送pwm 并启动adc采集数据 play_one_measure(adc_val,ADC_VAL_LEN); //HAL_Delay(5); osDelay(1); // 通道2发送 通道1接收 change_channel(0x02); // 等待通道切换稳定 //HAL_Delay(0); // 发送pwm 并启动adc采集数据 play_one_measure(adc_val1,ADC_VAL_LEN); tofx = cal_tof(adc_val,ADC_VAL_LEN); tofy = cal_tof(adc_val1,ADC_VAL_LEN); // 接受信号很小 if(tofx<0||tofy<0) { // 放弃本次采样,可以有效筛选雨滴等导致的异常大的风速数据 // 但是持续的遮挡会导致风速数据保持不变。 continue; // 手动设置渡越时间差为0,会在探头受遮挡的时候输出0,持续遮挡的时候也输出0,但是计算出声速将变得很大 // tofx = tofx/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; // tofy = tofy/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; // dtof = 0; }else{ // 计算成us tofx = (tofx/ADC_SAMP_RATE_MHz)+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; tofy = (tofy/ADC_SAMP_RATE_MHz)+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; // 通过各通道渡越时间求时间差 dtof = tofx-tofy; } weather_info.wind_c = DISTANCE/2.0f*(1.0f/tofx+1.0f/tofy); weather_info.wind_velocity_x = 0-DISTANCE*dtof/1.41422f/tofx/tofx; // 通道3 通道4 测试东西风速 // 通道3发送 通道4接收 change_channel(0x03); // 等待通道切换稳定 //HAL_Delay(0); // 发送pwm 并启动adc采集数据 play_one_measure(adc_val,ADC_VAL_LEN); //HAL_Delay(5); osDelay(1); // 通道4发送 通道3接收 change_channel(0x04); // 等待通道切换稳定 //HAL_Delay(0); // 发送pwm 并启动adc采集数据 play_one_measure(adc_val1,ADC_VAL_LEN); tofx = cal_tof(adc_val,ADC_VAL_LEN); tofy = cal_tof(adc_val1,ADC_VAL_LEN); // 如果测量的信号幅值过小。 if(tofx<0||tofy<0) { // 放弃本次采样,可以有效筛选雨滴等导致的异常大的风速数据 // 但是持续的遮挡会导致风速数据保持不变。 continue; // 手动设置渡越时间差为0,会在探头受遮挡的时候输出0,持续遮挡的时候也输出0,但是计算出声速将变得很大 // tofx = tofx/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; // tofy = tofy/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.0001f; // // 通过各通道渡越时间求时间差 // dtof = 0; }else{ // 计算成us tofx = tofx/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.000001f; tofy = tofy/ADC_SAMP_RATE_MHz+REV_MUTE_DELAY_US-1.0f/DRIVE_FREQ_MHz+0.000001f; // 通过各通道渡越时间求时间差 dtof = tofx-tofy; } weather_info.wind_c = DISTANCE/2.0f*(1.0f/tofx+1.0f/tofy); weather_info.wind_velocity_y = DISTANCE*dtof/1.41422f/tofx/tofx; weather_info.wind_velocity = sqrtf(weather_info.wind_velocity_x*weather_info.wind_velocity_x + weather_info.wind_velocity_y*weather_info.wind_velocity_y); // 分母加0.0001 保证分母不为0 weather_info.wind_angle = acosf(weather_info.wind_velocity_x/(weather_info.wind_velocity+0.000001f)); // 关闭定时器· __HAL_TIM_DISABLE(&htim16); // 显示时间 单位us run_time_us = __HAL_TIM_GET_COUNTER(&htim16);// htim16).Instance->CNT; speedx[speedi] = weather_info.wind_velocity_x; speedy[speedi] = weather_info.wind_velocity_y; speed[speedi] = weather_info.wind_velocity; angle[speedi++] = weather_info.wind_angle*180/PI; if(speedi>=AV_SPEED_LEN) { speedi=0; arm_mean_f32(speedx,AV_SPEED_LEN,&av_speedx); arm_mean_f32(speedy,AV_SPEED_LEN,&av_speedy); av_speed = sqrtf(av_speedx*av_speedx + av_speedy*av_speedy); av_angle = acosf(av_speedx/(av_speed+0.00000001))/2/PI*360; if(av_speedy<0) av_angle = 360-av_angle; if(fabs(av_speed)<0.1) { av_speed = 0; av_angle = 0; } term_printf("x:%.2f y:%.2f win_speed %.2f m/s angle %.2f \r\n",av_speedx,av_speedy,av_speed,av_angle); } ///term_printf("win_speed %.2f \r\n",weather_info.wind_velocity); //HAL_Delay(1); //osDelay(3// //kan ni osDelay(6); #if 0 if(cnt < 10){ wind_speed_data[cnt].fValue = weather_info.wind_c; wind_direcion_data[cnt].fValue = weather_info.wind_velocity; cnt++; }else{ cnt=0; U_DataType tmp_wind_speed_value = filter_middle(wind_speed_data,10, FILTER_DATA_TYPE_FLOAT); U_DataType tmp_wind_direction_value = filter_middle(wind_direcion_data,10, FILTER_DATA_TYPE_FLOAT); update_mcs_param(tmp_wind_speed_value.fValue, tmp_wind_direction_value.fValue); } #endif //osDelay(38); if(flag_init_msc_value== 1){ flag_init_msc_value = 0; g_stMcs_Para.min_wind_direction = weather_info.wind_c; g_stMcs_Para.average_wind_direction = weather_info.wind_c; g_stMcs_Para.max_wind_direction = 0; g_stMcs_Para.min_wind_speed = weather_info.wind_velocity; g_stMcs_Para.average_wind_speed = weather_info.wind_velocity; g_stMcs_Para.max_wind_speed = 0; } // update_mcs_param(weather_info.wind_velocity, weather_info.wind_c); } /* USER CODE END wind_task */ } /* 更新微气象站气象数据 */ /* 风向、风向瞬时值:3s的滑动平均值,以1s为步长 * 风速、风向平均值:以1min为步长,求xx分钟的滑动平均值,默认10分钟平均风速风向 * 最大风速、风向:从10min平均风速中选取; */ #define K_3S (3*1/3) #define K_1MIN (3*3/60) #define K_10MIN (3*60/600) int time_1s=0,time_11s=0,time_111s=0; int flag_time_1s=0,flag_time_3s=0,flag_time_1min=0,flag_time_10min=0; float Yn_sp_3s_average_value=0.0,Yn_1_sp_3s_average_value=0.0,yn_3s_sp_value=0.0; float Yn_sp_1min_average_value=0.0,Yn_1_sp_1min_average_value=0.0,yn_1min_sp_value=0.0; float Yn_sp_10min_average_value=0.0,Yn_1_sp_10min_average_value; float Yn_dir_3s_average_value=0.0,Yn_1_dir_3s_average_value=0.0,yn_3s_dir_value=0.0; float Yn_dir_1min_average_value=0.0,Yn_1_dir_1min_average_value=0.0,yn_1min_dir_value=0.0;; float Yn_dir_10min_average_value=0.0,Yn_1_dir_10min_average_value; float max_speed_value=0.0,max_direction_value=0.0,min_speed_value,min_direction_value=0.0; void update_mcs_param(float new_wind_speed, float new_wind_dirction) { static int flag1=0; static int flag11=0; static int flag111=0; time_1s++; if(time_1s==3){ time_1s=0; flag_time_3s=1; } time_11s++; if(time_11s==20){ time_11s=0; flag_time_1min=1; } time_111s++; if(time_111s==g_stConfigInfo.speed_average_time*60){ time_111s=0; flag_time_10min = 1; } /* 以1s为步长,计算3s风速风向滑动平均值 */ flag_time_1s=1; if(flag_time_1s){ if(flag1 ==0){ Yn_1_sp_3s_average_value = new_wind_speed; Yn_1_dir_3s_average_value=new_wind_dirction; flag1=1; } //flag_time_1s=0; Yn_sp_3s_average_value = K_3S*(new_wind_speed - Yn_1_sp_3s_average_value) + Yn_1_sp_3s_average_value; Yn_1_sp_3s_average_value = Yn_sp_3s_average_value; Yn_dir_3s_average_value = K_3S*(new_wind_dirction - Yn_1_dir_3s_average_value) + Yn_1_dir_3s_average_value; Yn_1_dir_3s_average_value = Yn_dir_3s_average_value; } /* 以3s为步长,计算1min滑动平均风速 */ if(flag_time_3s){ if(flag11 ==0){ Yn_1_sp_1min_average_value = Yn_sp_3s_average_value; Yn_1_dir_1min_average_value = Yn_dir_3s_average_value; flag11=1; } flag_time_3s=0; Yn_sp_1min_average_value = K_1MIN*(Yn_sp_3s_average_value - Yn_1_sp_1min_average_value) + Yn_1_sp_1min_average_value; Yn_1_sp_1min_average_value = Yn_sp_1min_average_value; Yn_dir_1min_average_value = K_1MIN*(Yn_dir_3s_average_value - Yn_1_dir_1min_average_value) + Yn_1_dir_1min_average_value; //Yn_1_dir_1min_average_value = Yn_dir_1min_averの‘dvv,f;age_value; } /* 以1min为步长,计算10min滑动平均风速 */ if(flag_time_1min){ if(flag111 ==0){ Yn_1_sp_10min_average_value = Yn_sp_1min_average_value; Yn_1_dir_10min_average_value = Yn_dir_1min_average_value; flag111=1; } flag_time_1min = 0; Yn_sp_10min_average_value = K_10MIN*(Yn_sp_1min_average_value - Yn_1_sp_10min_average_value) + Yn_1_sp_10min_average_value; Yn_1_sp_10min_average_value = Yn_sp_10min_average_value; Yn_dir_10min_average_value = K_10MIN*(Yn_dir_1min_average_value - Yn_1_dir_10min_average_value) + Yn_1_dir_10min_average_value; Yn_1_dir_10min_average_value = Yn_dir_10min_average_value; } /* 统计最大风速风向,及平均风速 */ if(flag_time_10min){ flag_time_10min = 0; if(max_direction_value < Yn_dir_10min_average_value){ max_direction_value = Yn_dir_10min_average_value; } if(min_direction_value > Yn_dir_10min_average_value){ min_direction_value = Yn_dir_10min_average_value; } if(max_speed_value < Yn_sp_10min_average_value){ max_speed_value = Yn_sp_10min_average_value; } if(min_speed_value > Yn_sp_10min_average_value){ min_speed_value = Yn_sp_10min_average_value; } g_stMcs_Para.min_wind_direction = min_direction_value; g_stMcs_Para.average_wind_direction = Yn_dir_10min_average_value; g_stMcs_Para.max_wind_direction = max_direction_value; g_stMcs_Para.min_wind_speed = min_speed_value; g_stMcs_Para.average_wind_speed = Yn_sp_10min_average_value; g_stMcs_Para.max_wind_speed = max_speed_value; } } SlidingWindow_10min win_10min = {0}; //求和函数 float sum(float arr[], int n) { float total = 0; for(int i = 0; i < n; i++) { total += arr[i]; } return total; } int times_1s_3sec = 0; int times_1s_1min = 0; void my_update_mcs_param(float new_wind_speed, float new_wind_dirction) { // 十分钟滑动平均值 win_10min.speed_data[win_10min.index] = new_wind_speed; //添加新数据 win_10min.direction_data[win_10min.index] = new_wind_dirction; if(win_10min.count < /* g_stConfigInfo.speed_average_time */ AVE_TIME) { win_10min.count++; } if(win_10min.count > /* g_stConfigInfo.speed_average_time */AVE_TIME){win_10min.count = AVE_TIME/* g_stConfigInfo.speed_average_time */;} //计算10min风速滑动平均值 win_10min.ave_speed_data[win_10min.index] = sum(win_10min.speed_data, win_10min.count) / win_10min.count; //计算10min风向滑动平均值,风向滑动平均值需要过零算法 float temp_sin_sum = 0; float temp_cos_sum = 0; for(int i = 0; i < win_10min.count; i++) { temp_sin_sum += sinf(win_10min.direction_data[i] * PI/180); temp_cos_sum += cosf(win_10min.direction_data[i] * PI/180); } win_10min.ave_direction_data[win_10min.index] = atanf(temp_sin_sum / (temp_cos_sum + 0.0001)) * 180/PI; // 不同象限不一样 // 1象限真实角度=本身 // 2象限真实角度=+180 // 3象限真实角度=+180 // 4象限真实角度=+360 if((temp_sin_sum > 0 && temp_cos_sum < 0) || (temp_sin_sum < 0 && temp_cos_sum < 0)) { win_10min.ave_direction_data[win_10min.index] += 180; }else if (temp_sin_sum < 0 && temp_cos_sum > 0) { win_10min.ave_direction_data[win_10min.index] += 360; } //默认第一个数据为最大或者最小 float temp_min_direction = win_10min.ave_direction_data[0]; float temp_max_direction = win_10min.ave_direction_data[0]; float temp_min_speed = win_10min.ave_speed_data[0]; float temp_max_speed = win_10min.ave_speed_data[0]; //统计 for (int i = 0; i < win_10min.count; i++) { if (win_10min.ave_direction_data[i] < temp_min_direction) { temp_min_direction = win_10min.ave_direction_data[i]; // 更新风向最小值 } if (win_10min.ave_direction_data[i] > temp_max_direction) { temp_max_direction = win_10min.ave_direction_data[i]; // 更新风向最大值 } if (win_10min.ave_speed_data[i] < temp_min_speed) { temp_min_speed = win_10min.ave_speed_data[i]; // 更新风速最小值 } if (win_10min.ave_speed_data[i] > temp_max_speed) { temp_max_speed = win_10min.ave_speed_data[i]; // 更新风速最大值 } } g_stMcs_Para.min_wind_direction = temp_min_direction; g_stMcs_Para.average_wind_direction = win_10min.ave_direction_data[win_10min.index]; g_stMcs_Para.max_wind_direction = temp_max_direction; g_stMcs_Para.min_wind_speed = temp_min_speed; g_stMcs_Para.average_wind_speed = win_10min.ave_speed_data[win_10min.index]; g_stMcs_Para.max_wind_speed = temp_max_speed; win_10min.index = (win_10min.index + 1) % AVE_TIME; //更新索引 } void tem_hum_update_task(void const * argument) { int time_s_temp_humi = 0; uint32_t time_s_1Day = 0; get_temp_humi_data(&g_stMcs_Para.temperature, &g_stMcs_Para.humidity);//开机先采集一次 while(1) { osDelay(1000); time_s_temp_humi ++; time_s_1Day ++; if (time_s_temp_humi >= g_stConfigInfo.temp_hum_update_time) { get_temp_humi_data(&g_stMcs_Para.temperature, &g_stMcs_Para.humidity); time_s_temp_humi = 0; } if (time_s_1Day >= 86400) { __iar_builtin_set_FAULTMASK(1); NVIC_SystemReset(); } my_update_mcs_param(av_speed, av_angle); //采集HP203B数据(大气压) Hp203bReadPressure(); } }