/** ****************************************************************************** * @file stm32l4xx_hal_tim.c * @author MCD Application Team * @brief TIM HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Timer (TIM) peripheral: * + TIM Time Base Initialization * + TIM Time Base Start * + TIM Time Base Start Interruption * + TIM Time Base Start DMA * + TIM Output Compare/PWM Initialization * + TIM Output Compare/PWM Channel Configuration * + TIM Output Compare/PWM Start * + TIM Output Compare/PWM Start Interruption * + TIM Output Compare/PWM Start DMA * + TIM Input Capture Initialization * + TIM Input Capture Channel Configuration * + TIM Input Capture Start * + TIM Input Capture Start Interruption * + TIM Input Capture Start DMA * + TIM One Pulse Initialization * + TIM One Pulse Channel Configuration * + TIM One Pulse Start * + TIM Encoder Interface Initialization * + TIM Encoder Interface Start * + TIM Encoder Interface Start Interruption * + TIM Encoder Interface Start DMA * + Commutation Event configuration with Interruption and DMA * + TIM OCRef clear configuration * + TIM External Clock configuration ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim ============================================================================== ##### TIMER Generic features ##### ============================================================================== [..] The Timer features include: (#) 16-bit up, down, up/down auto-reload counter. (#) 16-bit programmable prescaler allowing dividing (also on the fly) the counter clock frequency either by any factor between 1 and 65536. (#) Up to 4 independent channels for: (++) Input Capture (++) Output Compare (++) PWM generation (Edge and Center-aligned Mode) (++) One-pulse mode output (#) Synchronization circuit to control the timer with external signals and to interconnect several timers together. (#) Supports incremental encoder for positioning purposes ##### How to use this driver ##### ============================================================================== [..] (#) Initialize the TIM low level resources by implementing the following functions depending on the selected feature: (++) Time Base : HAL_TIM_Base_MspInit() (++) Input Capture : HAL_TIM_IC_MspInit() (++) Output Compare : HAL_TIM_OC_MspInit() (++) PWM generation : HAL_TIM_PWM_MspInit() (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() (++) Encoder mode output : HAL_TIM_Encoder_MspInit() (#) Initialize the TIM low level resources : (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); (##) TIM pins configuration (+++) Enable the clock for the TIM GPIOs using the following function: __HAL_RCC_GPIOx_CLK_ENABLE(); (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); (#) The external Clock can be configured, if needed (the default clock is the internal clock from the APBx), using the following function: HAL_TIM_ConfigClockSource, the clock configuration should be done before any start function. (#) Configure the TIM in the desired functioning mode using one of the Initialization function of this driver: (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an Output Compare signal. (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a PWM signal. (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an external signal. (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer in One Pulse Mode. (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. (#) Activate the TIM peripheral using one of the start functions depending from the feature used: (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). (#) The DMA Burst is managed with the two following functions: HAL_TIM_DMABurst_WriteStart() HAL_TIM_DMABurst_ReadStart() *** Callback registration *** ============================================= [..] The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 allows the user to configure dynamically the driver callbacks. [..] Use Function HAL_TIM_RegisterCallback() to register a callback. HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. [..] Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default weak function. HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. [..] These functions allow to register/unregister following callbacks: (+) Base_MspInitCallback : TIM Base Msp Init Callback. (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. (+) IC_MspInitCallback : TIM IC Msp Init Callback. (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. (+) OC_MspInitCallback : TIM OC Msp Init Callback. (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. (+) PeriodElapsedCallback : TIM Period Elapsed Callback. (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. (+) TriggerCallback : TIM Trigger Callback. (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. (+) IC_CaptureCallback : TIM Input Capture Callback. (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. (+) ErrorCallback : TIM Error Callback. (+) CommutationCallback : TIM Commutation Callback. (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. (+) BreakCallback : TIM Break Callback. (+) Break2Callback : TIM Break2 Callback. [..] By default, after the Init and when the state is HAL_TIM_STATE_RESET all interrupt callbacks are set to the corresponding weak functions: examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). [..] Exception done for MspInit and MspDeInit functions that are reset to the legacy weak functionalities in the Init / DeInit only when these callbacks are null (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit keep and use the user MspInit / MspDeInit callbacks(registered beforehand) [..] Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. Exception done MspInit / MspDeInit that can be registered / unregistered in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. In that case first register the MspInit/MspDeInit user callbacks using HAL_TIM_RegisterCallback() before calling DeInit or Init function. [..] When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32l4xx_hal.h" /** @addtogroup STM32L4xx_HAL_Driver * @{ */ /** @defgroup TIM TIM * @brief TIM HAL module driver * @{ */ #ifdef HAL_TIM_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup TIM_Private_Functions * @{ */ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup TIM_Exported_Functions TIM Exported Functions * @{ */ /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions * @brief Time Base functions * @verbatim ============================================================================== ##### Time Base functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM base. (+) De-initialize the TIM base. (+) Start the Time Base. (+) Stop the Time Base. (+) Start the Time Base and enable interrupt. (+) Stop the Time Base and disable interrupt. (+) Start the Time Base and enable DMA transfer. (+) Stop the Time Base and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Time base Unit according to the specified * parameters in the TIM_HandleTypeDef and initialize the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) { /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->Base_MspInitCallback == NULL) { htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->Base_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC */ HAL_TIM_Base_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Set the Time Base configuration */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Initialize the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM Base peripheral * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->Base_MspDeInitCallback == NULL) { htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; } /* DeInit the low level hardware */ htim->Base_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_Base_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Change the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM Base MSP. * @param htim TIM Base handle * @retval None */ __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Base_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Base MSP. * @param htim TIM Base handle * @retval None */ __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Base_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Base generation. * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) { uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); /* Check the TIM state */ if (htim->State != HAL_TIM_STATE_READY) { return HAL_ERROR; } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Base generation. * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Base generation in interrupt mode. * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) { uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); /* Check the TIM state */ if (htim->State != HAL_TIM_STATE_READY) { return HAL_ERROR; } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Enable the TIM Update interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Base generation in interrupt mode. * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); /* Disable the TIM Update interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Base generation in DMA mode. * @param htim TIM Base handle * @param pData The source Buffer address. * @param Length The length of data to be transferred from memory to peripheral. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length) { uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); /* Set the TIM state */ if (htim->State == HAL_TIM_STATE_BUSY) { return HAL_BUSY; } else if (htim->State == HAL_TIM_STATE_READY) { if ((pData == NULL) || (Length == 0U)) { return HAL_ERROR; } else { htim->State = HAL_TIM_STATE_BUSY; } } else { return HAL_ERROR; } /* Set the DMA Period elapsed callbacks */ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Update DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Base generation in DMA mode. * @param htim TIM Base handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM state */ htim->State = HAL_TIM_STATE_READY; /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions * @brief TIM Output Compare functions * @verbatim ============================================================================== ##### TIM Output Compare functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Output Compare. (+) De-initialize the TIM Output Compare. (+) Start the TIM Output Compare. (+) Stop the TIM Output Compare. (+) Start the TIM Output Compare and enable interrupt. (+) Stop the TIM Output Compare and disable interrupt. (+) Start the TIM Output Compare and enable DMA transfer. (+) Stop the TIM Output Compare and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Output Compare according to the specified * parameters in the TIM_HandleTypeDef and initializes the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() * @param htim TIM Output Compare handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) { /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->OC_MspInitCallback == NULL) { htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->OC_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OC_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Init the base time for the Output Compare */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Initialize the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM peripheral * @param htim TIM Output Compare handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->OC_MspDeInitCallback == NULL) { htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; } /* DeInit the low level hardware */ htim->OC_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OC_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Change the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM Output Compare MSP. * @param htim TIM Output Compare handle * @retval None */ __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OC_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Output Compare MSP. * @param htim TIM Output Compare handle * @retval None */ __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OC_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Output Compare signal generation. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); /* Check the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Output Compare signal generation. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); /* Disable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Output Compare signal generation in interrupt mode. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Check the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Enable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } } /* Return function status */ return status; } /** * @brief Stops the TIM Output Compare signal generation in interrupt mode. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @brief Starts the TIM Output Compare signal generation in DMA mode. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @param pData The source Buffer address. * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, uint16_t Length) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Set the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { if ((pData == NULL) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); break; } case TIM_CHANNEL_2: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); break; } case TIM_CHANNEL_3: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); break; } case TIM_CHANNEL_4: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Enable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } } /* Return function status */ return status; } /** * @brief Stops the TIM Output Compare signal generation in DMA mode. * @param htim TIM Output Compare handle * @param Channel TIM Channel to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Output compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions * @brief TIM PWM functions * @verbatim ============================================================================== ##### TIM PWM functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM PWM. (+) De-initialize the TIM PWM. (+) Start the TIM PWM. (+) Stop the TIM PWM. (+) Start the TIM PWM and enable interrupt. (+) Stop the TIM PWM and disable interrupt. (+) Start the TIM PWM and enable DMA transfer. (+) Stop the TIM PWM and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM PWM Time Base according to the specified * parameters in the TIM_HandleTypeDef and initializes the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() * @param htim TIM PWM handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) { /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->PWM_MspInitCallback == NULL) { htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->PWM_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_PWM_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Init the base time for the PWM */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Initialize the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM peripheral * @param htim TIM PWM handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->PWM_MspDeInitCallback == NULL) { htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; } /* DeInit the low level hardware */ htim->PWM_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_PWM_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Change the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM PWM MSP. * @param htim TIM PWM handle * @retval None */ __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM PWM MSP. * @param htim TIM PWM handle * @retval None */ __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_MspDeInit could be implemented in the user file */ } /** * @brief Starts the PWM signal generation. * @param htim TIM handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); /* Check the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the PWM signal generation. * @param htim TIM PWM handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); /* Disable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; } /** * @brief Starts the PWM signal generation in interrupt mode. * @param htim TIM PWM handle * @param Channel TIM Channel to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Check the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } } /* Return function status */ return status; } /** * @brief Stops the PWM signal generation in interrupt mode. * @param htim TIM PWM handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @brief Starts the TIM PWM signal generation in DMA mode. * @param htim TIM PWM handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @param pData The source Buffer address. * @param Length The length of data to be transferred from memory to TIM peripheral * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, uint16_t Length) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Set the TIM channel state */ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) { return HAL_BUSY; } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) { if ((pData == NULL) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); break; } case TIM_CHANNEL_2: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); break; } case TIM_CHANNEL_3: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Output Capture/Compare 3 request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); break; } case TIM_CHANNEL_4: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } } /* Return function status */ return status; } /** * @brief Stops the TIM PWM signal generation in DMA mode. * @param htim TIM PWM handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions * @brief TIM Input Capture functions * @verbatim ============================================================================== ##### TIM Input Capture functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Input Capture. (+) De-initialize the TIM Input Capture. (+) Start the TIM Input Capture. (+) Stop the TIM Input Capture. (+) Start the TIM Input Capture and enable interrupt. (+) Stop the TIM Input Capture and disable interrupt. (+) Start the TIM Input Capture and enable DMA transfer. (+) Stop the TIM Input Capture and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Input Capture Time base according to the specified * parameters in the TIM_HandleTypeDef and initializes the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() * @param htim TIM Input Capture handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) { /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->IC_MspInitCallback == NULL) { htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->IC_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_IC_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Init the base time for the input capture */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Initialize the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM peripheral * @param htim TIM Input Capture handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->IC_MspDeInitCallback == NULL) { htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; } /* DeInit the low level hardware */ htim->IC_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ HAL_TIM_IC_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Change the TIM channels state */ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM Input Capture MSP. * @param htim TIM Input Capture handle * @retval None */ __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Input Capture MSP. * @param htim TIM handle * @retval None */ __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Input Capture measurement. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { uint32_t tmpsmcr; HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Check the TIM channel state */ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Input Capture measurement. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Disable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Input Capture measurement in interrupt mode. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); /* Check the TIM channel state */ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); switch (Channel) { case TIM_CHANNEL_1: { /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Enable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Enable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } } /* Return function status */ return status; } /** * @brief Stops the TIM Input Capture measurement in interrupt mode. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @brief Starts the TIM Input Capture measurement in DMA mode. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @param pData The destination Buffer address. * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); /* Set the TIM channel state */ if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; } else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) { if ((pData == NULL) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } /* Enable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); break; } case TIM_CHANNEL_2: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); break; } case TIM_CHANNEL_3: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); break; } case TIM_CHANNEL_4: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); break; } default: status = HAL_ERROR; break; } /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) { tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) { __HAL_TIM_ENABLE(htim); } } else { __HAL_TIM_ENABLE(htim); } /* Return function status */ return status; } /** * @brief Stops the TIM Input Capture measurement in DMA mode. * @param htim TIM Input Capture handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel)); assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); /* Disable the Input Capture channel */ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); switch (Channel) { case TIM_CHANNEL_1: { /* Disable the TIM Capture/Compare 1 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); break; } case TIM_CHANNEL_2: { /* Disable the TIM Capture/Compare 2 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); break; } case TIM_CHANNEL_3: { /* Disable the TIM Capture/Compare 3 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); break; } case TIM_CHANNEL_4: { /* Disable the TIM Capture/Compare 4 DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return status; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions * @brief TIM One Pulse functions * @verbatim ============================================================================== ##### TIM One Pulse functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM One Pulse. (+) De-initialize the TIM One Pulse. (+) Start the TIM One Pulse. (+) Stop the TIM One Pulse. (+) Start the TIM One Pulse and enable interrupt. (+) Stop the TIM One Pulse and disable interrupt. (+) Start the TIM One Pulse and enable DMA transfer. (+) Stop the TIM One Pulse and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM One Pulse Time Base according to the specified * parameters in the TIM_HandleTypeDef and initializes the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() * @note When the timer instance is initialized in One Pulse mode, timer * channels 1 and channel 2 are reserved and cannot be used for other * purpose. * @param htim TIM One Pulse handle * @param OnePulseMode Select the One pulse mode. * This parameter can be one of the following values: * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) { /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_OPM_MODE(OnePulseMode)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->OnePulse_MspInitCallback == NULL) { htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->OnePulse_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_OnePulse_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Configure the Time base in the One Pulse Mode */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Reset the OPM Bit */ htim->Instance->CR1 &= ~TIM_CR1_OPM; /* Configure the OPM Mode */ htim->Instance->CR1 |= OnePulseMode; /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Initialize the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM One Pulse * @param htim TIM One Pulse handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->OnePulse_MspDeInitCallback == NULL) { htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; } /* DeInit the low level hardware */ htim->OnePulse_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_OnePulse_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Set the TIM channel state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM One Pulse MSP. * @param htim TIM One Pulse handle * @retval None */ __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OnePulse_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM One Pulse MSP. * @param htim TIM One Pulse handle * @retval None */ __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM One Pulse signal generation. * @note Though OutputChannel parameter is deprecated and ignored by the function * it has been kept to avoid HAL_TIM API compatibility break. * @note The pulse output channel is determined when calling * @ref HAL_TIM_OnePulse_ConfigChannel(). * @param htim TIM One Pulse handle * @param OutputChannel See note above * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); /* Check the TIM channels state */ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together No need to enable the counter, it's enabled automatically by hardware (the counter starts in response to a stimulus and generate a pulse */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM One Pulse signal generation. * @note Though OutputChannel parameter is deprecated and ignored by the function * it has been kept to avoid HAL_TIM API compatibility break. * @note The pulse output channel is determined when calling * @ref HAL_TIM_OnePulse_ConfigChannel(). * @param htim TIM One Pulse handle * @param OutputChannel See note above * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); /* Disable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM One Pulse signal generation in interrupt mode. * @note Though OutputChannel parameter is deprecated and ignored by the function * it has been kept to avoid HAL_TIM API compatibility break. * @note The pulse output channel is determined when calling * @ref HAL_TIM_OnePulse_ConfigChannel(). * @param htim TIM One Pulse handle * @param OutputChannel See note above * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); /* Check the TIM channels state */ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); /* Enable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together No need to enable the counter, it's enabled automatically by hardware (the counter starts in response to a stimulus and generate a pulse */ /* Enable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); /* Enable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Enable the main output */ __HAL_TIM_MOE_ENABLE(htim); } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM One Pulse signal generation in interrupt mode. * @note Though OutputChannel parameter is deprecated and ignored by the function * it has been kept to avoid HAL_TIM API compatibility break. * @note The pulse output channel is determined when calling * @ref HAL_TIM_OnePulse_ConfigChannel(). * @param htim TIM One Pulse handle * @param OutputChannel See note above * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) { /* Prevent unused argument(s) compilation warning */ UNUSED(OutputChannel); /* Disable the TIM Capture/Compare 1 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); /* Disable the TIM Capture/Compare 2 interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); /* Disable the Capture compare and the Input Capture channels (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) { /* Disable the Main Output */ __HAL_TIM_MOE_DISABLE(htim); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions * @brief TIM Encoder functions * @verbatim ============================================================================== ##### TIM Encoder functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the TIM Encoder. (+) De-initialize the TIM Encoder. (+) Start the TIM Encoder. (+) Stop the TIM Encoder. (+) Start the TIM Encoder and enable interrupt. (+) Stop the TIM Encoder and disable interrupt. (+) Start the TIM Encoder and enable DMA transfer. (+) Stop the TIM Encoder and disable DMA transfer. @endverbatim * @{ */ /** * @brief Initializes the TIM Encoder Interface and initialize the associated handle. * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) * requires a timer reset to avoid unexpected direction * due to DIR bit readonly in center aligned mode. * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa * @note When the timer instance is initialized in Encoder mode, timer * channels 1 and channel 2 are reserved and cannot be used for other * purpose. * @param htim TIM Encoder Interface handle * @param sConfig TIM Encoder Interface configuration structure * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig) { uint32_t tmpsmcr; uint32_t tmpccmr1; uint32_t tmpccer; /* Check the TIM handle allocation */ if (htim == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); if (htim->State == HAL_TIM_STATE_RESET) { /* Allocate lock resource and initialize it */ htim->Lock = HAL_UNLOCKED; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /* Reset interrupt callbacks to legacy weak callbacks */ TIM_ResetCallback(htim); if (htim->Encoder_MspInitCallback == NULL) { htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; } /* Init the low level hardware : GPIO, CLOCK, NVIC */ htim->Encoder_MspInitCallback(htim); #else /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ HAL_TIM_Encoder_MspInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Set the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Reset the SMS and ECE bits */ htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); /* Configure the Time base in the Encoder Mode */ TIM_Base_SetConfig(htim->Instance, &htim->Init); /* Get the TIMx SMCR register value */ tmpsmcr = htim->Instance->SMCR; /* Get the TIMx CCMR1 register value */ tmpccmr1 = htim->Instance->CCMR1; /* Get the TIMx CCER register value */ tmpccer = htim->Instance->CCER; /* Set the encoder Mode */ tmpsmcr |= sConfig->EncoderMode; /* Select the Capture Compare 1 and the Capture Compare 2 as input */ tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); /* Set the TI1 and the TI2 Polarities */ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); /* Write to TIMx SMCR */ htim->Instance->SMCR = tmpsmcr; /* Write to TIMx CCMR1 */ htim->Instance->CCMR1 = tmpccmr1; /* Write to TIMx CCER */ htim->Instance->CCER = tmpccer; /* Initialize the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); /* Initialize the TIM state*/ htim->State = HAL_TIM_STATE_READY; return HAL_OK; } /** * @brief DeInitializes the TIM Encoder interface * @param htim TIM Encoder Interface handle * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); htim->State = HAL_TIM_STATE_BUSY; /* Disable the TIM Peripheral Clock */ __HAL_TIM_DISABLE(htim); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) if (htim->Encoder_MspDeInitCallback == NULL) { htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; } /* DeInit the low level hardware */ htim->Encoder_MspDeInitCallback(htim); #else /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ HAL_TIM_Encoder_MspDeInit(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; /* Set the TIM channels state */ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); /* Change TIM state */ htim->State = HAL_TIM_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Initializes the TIM Encoder Interface MSP. * @param htim TIM Encoder Interface handle * @retval None */ __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Encoder_MspInit could be implemented in the user file */ } /** * @brief DeInitializes TIM Encoder Interface MSP. * @param htim TIM Encoder Interface handle * @retval None */ __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_Encoder_MspDeInit could be implemented in the user file */ } /** * @brief Starts the TIM Encoder Interface. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Set the TIM channel(s) state */ if (Channel == TIM_CHANNEL_1) { if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); } } else if (Channel == TIM_CHANNEL_2) { if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } else { if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } /* Enable the encoder interface channels */ switch (Channel) { case TIM_CHANNEL_1: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); break; } case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); break; } default : { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); break; } } /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Encoder Interface. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ switch (Channel) { case TIM_CHANNEL_1: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); break; } case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); break; } default : { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); break; } } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel(s) state */ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Encoder Interface in interrupt mode. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Set the TIM channel(s) state */ if (Channel == TIM_CHANNEL_1) { if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); } } else if (Channel == TIM_CHANNEL_2) { if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } else { if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } /* Enable the encoder interface channels */ /* Enable the capture compare Interrupts 1 and/or 2 */ switch (Channel) { case TIM_CHANNEL_1: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); break; } case TIM_CHANNEL_2: { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } default : { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); break; } } /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Encoder Interface in interrupt mode. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be disabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ if (Channel == TIM_CHANNEL_1) { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts 1 */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); } else if (Channel == TIM_CHANNEL_2) { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts 2 */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); } else { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); /* Disable the capture compare Interrupts 1 and 2 */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel(s) state */ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return HAL_OK; } /** * @brief Starts the TIM Encoder Interface in DMA mode. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @param pData1 The destination Buffer address for IC1. * @param pData2 The destination Buffer address for IC2. * @param Length The length of data to be transferred from TIM peripheral to memory. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) { HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Set the TIM channel(s) state */ if (Channel == TIM_CHANNEL_1) { if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) { if ((pData1 == NULL) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } } else if (Channel == TIM_CHANNEL_2) { if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; } else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) { if ((pData2 == NULL) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } } else { if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) { return HAL_BUSY; } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) { if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U)) { return HAL_ERROR; } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); } } else { return HAL_ERROR; } } switch (Channel) { case TIM_CHANNEL_1: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); break; } case TIM_CHANNEL_2: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); break; } default: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) { /* Return error status */ return HAL_ERROR; } /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); /* Enable the TIM Input Capture DMA request */ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); /* Enable the Capture compare channel */ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); /* Enable the Peripheral */ __HAL_TIM_ENABLE(htim); break; } } /* Return function status */ return HAL_OK; } /** * @brief Stops the TIM Encoder Interface in DMA mode. * @param htim TIM Encoder Interface handle * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) { /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); /* Disable the Input Capture channels 1 and 2 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ if (Channel == TIM_CHANNEL_1) { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); /* Disable the capture compare DMA Request 1 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); } else if (Channel == TIM_CHANNEL_2) { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); /* Disable the capture compare DMA Request 2 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); } else { TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); /* Disable the capture compare DMA Request 1 and 2 */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); } /* Disable the Peripheral */ __HAL_TIM_DISABLE(htim); /* Set the TIM channel(s) state */ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) { TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); } else { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management * @brief TIM IRQ handler management * @verbatim ============================================================================== ##### IRQ handler management ##### ============================================================================== [..] This section provides Timer IRQ handler function. @endverbatim * @{ */ /** * @brief This function handles TIM interrupts requests. * @param htim TIM handle * @retval None */ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) { uint32_t itsource = htim->Instance->DIER; uint32_t itflag = htim->Instance->SR; /* Capture compare 1 event */ if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1)) { if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1)) { { __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; /* Input capture event */ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureCallback(htim); #else HAL_TIM_IC_CaptureCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->OC_DelayElapsedCallback(htim); htim->PWM_PulseFinishedCallback(htim); #else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } } } /* Capture compare 2 event */ if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2)) { if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; /* Input capture event */ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureCallback(htim); #else HAL_TIM_IC_CaptureCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->OC_DelayElapsedCallback(htim); htim->PWM_PulseFinishedCallback(htim); #else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } } /* Capture compare 3 event */ if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3)) { if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; /* Input capture event */ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureCallback(htim); #else HAL_TIM_IC_CaptureCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->OC_DelayElapsedCallback(htim); htim->PWM_PulseFinishedCallback(htim); #else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } } /* Capture compare 4 event */ if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4)) { if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; /* Input capture event */ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureCallback(htim); #else HAL_TIM_IC_CaptureCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /* Output compare event */ else { #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->OC_DelayElapsedCallback(htim); htim->PWM_PulseFinishedCallback(htim); #else HAL_TIM_OC_DelayElapsedCallback(htim); HAL_TIM_PWM_PulseFinishedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } } /* TIM Update event */ if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE)) { if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->PeriodElapsedCallback(htim); #else HAL_TIM_PeriodElapsedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM Break input event */ if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK)) { if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->BreakCallback(htim); #else HAL_TIMEx_BreakCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM Break2 input event */ if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2)) { if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK)) { __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->Break2Callback(htim); #else HAL_TIMEx_Break2Callback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM Trigger detection event */ if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER)) { if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER)) { __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->TriggerCallback(htim); #else HAL_TIM_TriggerCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } /* TIM commutation event */ if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM)) { if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM)) { __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->CommutationCallback(htim); #else HAL_TIMEx_CommutCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } } } /** * @} */ /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions * @brief TIM Peripheral Control functions * @verbatim ============================================================================== ##### Peripheral Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. (+) Configure External Clock source. (+) Configure Complementary channels, break features and dead time. (+) Configure Master and the Slave synchronization. (+) Configure the DMA Burst Mode. @endverbatim * @{ */ /** * @brief Initializes the TIM Output Compare Channels according to the specified * parameters in the TIM_OC_InitTypeDef. * @param htim TIM Output Compare handle * @param sConfig TIM Output Compare configuration structure * @param Channel TIM Channels to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_OC_InitTypeDef *sConfig, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CHANNELS(Channel)); assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); /* Process Locked */ __HAL_LOCK(htim); switch (Channel) { case TIM_CHANNEL_1: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); /* Configure the TIM Channel 1 in Output Compare */ TIM_OC1_SetConfig(htim->Instance, sConfig); break; } case TIM_CHANNEL_2: { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); /* Configure the TIM Channel 2 in Output Compare */ TIM_OC2_SetConfig(htim->Instance, sConfig); break; } case TIM_CHANNEL_3: { /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); /* Configure the TIM Channel 3 in Output Compare */ TIM_OC3_SetConfig(htim->Instance, sConfig); break; } case TIM_CHANNEL_4: { /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); /* Configure the TIM Channel 4 in Output Compare */ TIM_OC4_SetConfig(htim->Instance, sConfig); break; } case TIM_CHANNEL_5: { /* Check the parameters */ assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); /* Configure the TIM Channel 5 in Output Compare */ TIM_OC5_SetConfig(htim->Instance, sConfig); break; } case TIM_CHANNEL_6: { /* Check the parameters */ assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); /* Configure the TIM Channel 6 in Output Compare */ TIM_OC6_SetConfig(htim->Instance, sConfig); break; } default: status = HAL_ERROR; break; } __HAL_UNLOCK(htim); return status; } /** * @brief Initializes the TIM Input Capture Channels according to the specified * parameters in the TIM_IC_InitTypeDef. * @param htim TIM IC handle * @param sConfig TIM Input Capture configuration structure * @param Channel TIM Channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); /* Process Locked */ __HAL_LOCK(htim); if (Channel == TIM_CHANNEL_1) { /* TI1 Configuration */ TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC1PSC Bits */ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; /* Set the IC1PSC value */ htim->Instance->CCMR1 |= sConfig->ICPrescaler; } else if (Channel == TIM_CHANNEL_2) { /* TI2 Configuration */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC2PSC Bits */ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; /* Set the IC2PSC value */ htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); } else if (Channel == TIM_CHANNEL_3) { /* TI3 Configuration */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); TIM_TI3_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC3PSC Bits */ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; /* Set the IC3PSC value */ htim->Instance->CCMR2 |= sConfig->ICPrescaler; } else if (Channel == TIM_CHANNEL_4) { /* TI4 Configuration */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); TIM_TI4_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC4PSC Bits */ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; /* Set the IC4PSC value */ htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); } else { status = HAL_ERROR; } __HAL_UNLOCK(htim); return status; } /** * @brief Initializes the TIM PWM channels according to the specified * parameters in the TIM_OC_InitTypeDef. * @param htim TIM PWM handle * @param sConfig TIM PWM configuration structure * @param Channel TIM Channels to be configured * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_OC_InitTypeDef *sConfig, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_CHANNELS(Channel)); assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); /* Process Locked */ __HAL_LOCK(htim); switch (Channel) { case TIM_CHANNEL_1: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); /* Configure the Channel 1 in PWM mode */ TIM_OC1_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel1 */ htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; /* Configure the Output Fast mode */ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; htim->Instance->CCMR1 |= sConfig->OCFastMode; break; } case TIM_CHANNEL_2: { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); /* Configure the Channel 2 in PWM mode */ TIM_OC2_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel2 */ htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; /* Configure the Output Fast mode */ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; break; } case TIM_CHANNEL_3: { /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); /* Configure the Channel 3 in PWM mode */ TIM_OC3_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel3 */ htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; /* Configure the Output Fast mode */ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; htim->Instance->CCMR2 |= sConfig->OCFastMode; break; } case TIM_CHANNEL_4: { /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); /* Configure the Channel 4 in PWM mode */ TIM_OC4_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel4 */ htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; /* Configure the Output Fast mode */ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; break; } case TIM_CHANNEL_5: { /* Check the parameters */ assert_param(IS_TIM_CC5_INSTANCE(htim->Instance)); /* Configure the Channel 5 in PWM mode */ TIM_OC5_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel5*/ htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE; /* Configure the Output Fast mode */ htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE; htim->Instance->CCMR3 |= sConfig->OCFastMode; break; } case TIM_CHANNEL_6: { /* Check the parameters */ assert_param(IS_TIM_CC6_INSTANCE(htim->Instance)); /* Configure the Channel 6 in PWM mode */ TIM_OC6_SetConfig(htim->Instance, sConfig); /* Set the Preload enable bit for channel6 */ htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE; /* Configure the Output Fast mode */ htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE; htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U; break; } default: status = HAL_ERROR; break; } __HAL_UNLOCK(htim); return status; } /** * @brief Initializes the TIM One Pulse Channels according to the specified * parameters in the TIM_OnePulse_InitTypeDef. * @param htim TIM One Pulse handle * @param sConfig TIM One Pulse configuration structure * @param OutputChannel TIM output channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @param InputChannel TIM input Channel to configure * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @note To output a waveform with a minimum delay user can enable the fast * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx * output is forced in response to the edge detection on TIx input, * without taking in account the comparison. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, uint32_t OutputChannel, uint32_t InputChannel) { HAL_StatusTypeDef status = HAL_OK; TIM_OC_InitTypeDef temp1; /* Check the parameters */ assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); if (OutputChannel != InputChannel) { /* Process Locked */ __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; /* Extract the Output compare configuration from sConfig structure */ temp1.OCMode = sConfig->OCMode; temp1.Pulse = sConfig->Pulse; temp1.OCPolarity = sConfig->OCPolarity; temp1.OCNPolarity = sConfig->OCNPolarity; temp1.OCIdleState = sConfig->OCIdleState; temp1.OCNIdleState = sConfig->OCNIdleState; switch (OutputChannel) { case TIM_CHANNEL_1: { assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); TIM_OC1_SetConfig(htim->Instance, &temp1); break; } case TIM_CHANNEL_2: { assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); TIM_OC2_SetConfig(htim->Instance, &temp1); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { switch (InputChannel) { case TIM_CHANNEL_1: { assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC1PSC Bits */ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; /* Select the Trigger source */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= TIM_TS_TI1FP1; /* Select the Slave Mode */ htim->Instance->SMCR &= ~TIM_SMCR_SMS; htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; break; } case TIM_CHANNEL_2: { assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter); /* Reset the IC2PSC Bits */ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; /* Select the Trigger source */ htim->Instance->SMCR &= ~TIM_SMCR_TS; htim->Instance->SMCR |= TIM_TS_TI2FP2; /* Select the Slave Mode */ htim->Instance->SMCR &= ~TIM_SMCR_SMS; htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; break; } default: status = HAL_ERROR; break; } } htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return status; } else { return HAL_ERROR; } } /** * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral * @param htim TIM handle * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 * @arg TIM_DMABASE_SMCR * @arg TIM_DMABASE_DIER * @arg TIM_DMABASE_SR * @arg TIM_DMABASE_EGR * @arg TIM_DMABASE_CCMR1 * @arg TIM_DMABASE_CCMR2 * @arg TIM_DMABASE_CCER * @arg TIM_DMABASE_CNT * @arg TIM_DMABASE_PSC * @arg TIM_DMABASE_ARR * @arg TIM_DMABASE_RCR * @arg TIM_DMABASE_CCR1 * @arg TIM_DMABASE_CCR2 * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR * @arg TIM_DMABASE_OR1 * @arg TIM_DMABASE_CCMR3 * @arg TIM_DMABASE_CCR5 * @arg TIM_DMABASE_CCR6 * @arg TIM_DMABASE_OR2 * @arg TIM_DMABASE_OR3 * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source * @param BurstBuffer The Buffer address. * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. * @note This function should be used only when BurstLength is equal to DMA data transfer length. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength) { HAL_StatusTypeDef status; status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U); return status; } /** * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral * @param htim TIM handle * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 * @arg TIM_DMABASE_SMCR * @arg TIM_DMABASE_DIER * @arg TIM_DMABASE_SR * @arg TIM_DMABASE_EGR * @arg TIM_DMABASE_CCMR1 * @arg TIM_DMABASE_CCMR2 * @arg TIM_DMABASE_CCER * @arg TIM_DMABASE_CNT * @arg TIM_DMABASE_PSC * @arg TIM_DMABASE_ARR * @arg TIM_DMABASE_RCR * @arg TIM_DMABASE_CCR1 * @arg TIM_DMABASE_CCR2 * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR * @arg TIM_DMABASE_OR1 * @arg TIM_DMABASE_CCMR3 * @arg TIM_DMABASE_CCR5 * @arg TIM_DMABASE_CCR6 * @arg TIM_DMABASE_OR2 * @arg TIM_DMABASE_OR3 * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source * @param BurstBuffer The Buffer address. * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. * @param DataLength Data length. This parameter can be one value * between 1 and 0xFFFF. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); assert_param(IS_TIM_DMA_LENGTH(BurstLength)); assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) { return HAL_BUSY; } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) { if ((BurstBuffer == NULL) && (BurstLength > 0U)) { return HAL_ERROR; } else { htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; } } else { /* nothing to do */ } switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { /* Set the DMA Period elapsed callbacks */ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC1: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC2: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC3: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC4: { /* Set the DMA compare callbacks */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_COM: { /* Set the DMA commutation callbacks */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_TRIGGER: { /* Set the DMA trigger callbacks */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Configure the DMA Burst Mode */ htim->Instance->DCR = (BurstBaseAddress | BurstLength); /* Enable the TIM DMA Request */ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); } /* Return function status */ return status; } /** * @brief Stops the TIM DMA Burst mode * @param htim TIM handle * @param BurstRequestSrc TIM DMA Request sources to disable * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); /* Abort the DMA transfer (at least disable the DMA channel) */ switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); break; } case TIM_DMA_CC1: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); break; } case TIM_DMA_CC2: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); break; } case TIM_DMA_CC3: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); break; } case TIM_DMA_CC4: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); break; } case TIM_DMA_COM: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); break; } case TIM_DMA_TRIGGER: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; } /* Return function status */ return status; } /** * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory * @param htim TIM handle * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 * @arg TIM_DMABASE_SMCR * @arg TIM_DMABASE_DIER * @arg TIM_DMABASE_SR * @arg TIM_DMABASE_EGR * @arg TIM_DMABASE_CCMR1 * @arg TIM_DMABASE_CCMR2 * @arg TIM_DMABASE_CCER * @arg TIM_DMABASE_CNT * @arg TIM_DMABASE_PSC * @arg TIM_DMABASE_ARR * @arg TIM_DMABASE_RCR * @arg TIM_DMABASE_CCR1 * @arg TIM_DMABASE_CCR2 * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR * @arg TIM_DMABASE_OR1 * @arg TIM_DMABASE_CCMR3 * @arg TIM_DMABASE_CCR5 * @arg TIM_DMABASE_CCR6 * @arg TIM_DMABASE_OR2 * @arg TIM_DMABASE_OR3 * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source * @param BurstBuffer The Buffer address. * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. * @note This function should be used only when BurstLength is equal to DMA data transfer length. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) { HAL_StatusTypeDef status; status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U); return status; } /** * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory * @param htim TIM handle * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read * This parameter can be one of the following values: * @arg TIM_DMABASE_CR1 * @arg TIM_DMABASE_CR2 * @arg TIM_DMABASE_SMCR * @arg TIM_DMABASE_DIER * @arg TIM_DMABASE_SR * @arg TIM_DMABASE_EGR * @arg TIM_DMABASE_CCMR1 * @arg TIM_DMABASE_CCMR2 * @arg TIM_DMABASE_CCER * @arg TIM_DMABASE_CNT * @arg TIM_DMABASE_PSC * @arg TIM_DMABASE_ARR * @arg TIM_DMABASE_RCR * @arg TIM_DMABASE_CCR1 * @arg TIM_DMABASE_CCR2 * @arg TIM_DMABASE_CCR3 * @arg TIM_DMABASE_CCR4 * @arg TIM_DMABASE_BDTR * @arg TIM_DMABASE_OR1 * @arg TIM_DMABASE_CCMR3 * @arg TIM_DMABASE_CCR5 * @arg TIM_DMABASE_CCR6 * @arg TIM_DMABASE_OR2 * @arg TIM_DMABASE_OR3 * @param BurstRequestSrc TIM DMA Request sources * This parameter can be one of the following values: * @arg TIM_DMA_UPDATE: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source * @param BurstBuffer The Buffer address. * @param BurstLength DMA Burst length. This parameter can be one value * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. * @param DataLength Data length. This parameter can be one value * between 1 and 0xFFFF. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); assert_param(IS_TIM_DMA_LENGTH(BurstLength)); assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) { return HAL_BUSY; } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) { if ((BurstBuffer == NULL) && (BurstLength > 0U)) { return HAL_ERROR; } else { htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; } } else { /* nothing to do */ } switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { /* Set the DMA Period elapsed callbacks */ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC1: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC2: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC3: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_CC4: { /* Set the DMA capture callbacks */ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_COM: { /* Set the DMA commutation callbacks */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } case TIM_DMA_TRIGGER: { /* Set the DMA trigger callbacks */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; /* Set the DMA error callback */ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; /* Enable the DMA channel */ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) { /* Return error status */ return HAL_ERROR; } break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Configure the DMA Burst Mode */ htim->Instance->DCR = (BurstBaseAddress | BurstLength); /* Enable the TIM DMA Request */ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); } /* Return function status */ return status; } /** * @brief Stop the DMA burst reading * @param htim TIM handle * @param BurstRequestSrc TIM DMA Request sources to disable. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); /* Abort the DMA transfer (at least disable the DMA channel) */ switch (BurstRequestSrc) { case TIM_DMA_UPDATE: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); break; } case TIM_DMA_CC1: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); break; } case TIM_DMA_CC2: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); break; } case TIM_DMA_CC3: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); break; } case TIM_DMA_CC4: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); break; } case TIM_DMA_COM: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); break; } case TIM_DMA_TRIGGER: { (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { /* Disable the TIM Update DMA request */ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); /* Change the DMA burst operation state */ htim->DMABurstState = HAL_DMA_BURST_STATE_READY; } /* Return function status */ return status; } /** * @brief Generate a software event * @param htim TIM handle * @param EventSource specifies the event source. * This parameter can be one of the following values: * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source * @arg TIM_EVENTSOURCE_COM: Timer COM event source * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source * @note Basic timers can only generate an update event. * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant * only for timer instances supporting break input(s). * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) { /* Check the parameters */ assert_param(IS_TIM_INSTANCE(htim->Instance)); assert_param(IS_TIM_EVENT_SOURCE(EventSource)); /* Process Locked */ __HAL_LOCK(htim); /* Change the TIM state */ htim->State = HAL_TIM_STATE_BUSY; /* Set the event sources */ htim->Instance->EGR = EventSource; /* Change the TIM state */ htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); /* Return function status */ return HAL_OK; } /** * @brief Configures the OCRef clear feature * @param htim TIM handle * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that * contains the OCREF clear feature and parameters for the TIM peripheral. * @param Channel specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 * @arg TIM_CHANNEL_2: TIM Channel 2 * @arg TIM_CHANNEL_3: TIM Channel 3 * @arg TIM_CHANNEL_4: TIM Channel 4 * @arg TIM_CHANNEL_5: TIM Channel 5 * @arg TIM_CHANNEL_6: TIM Channel 6 * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, const TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel) { HAL_StatusTypeDef status = HAL_OK; /* Check the parameters */ assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); /* Process Locked */ __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; switch (sClearInputConfig->ClearInputSource) { case TIM_CLEARINPUTSOURCE_NONE: { /* Clear the OCREF clear selection bit and the the ETR Bits */ CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); break; } case TIM_CLEARINPUTSOURCE_OCREFCLR: { /* Clear the OCREF clear selection bit */ CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); break; } case TIM_CLEARINPUTSOURCE_ETR: { /* Check the parameters */ assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) { htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_ERROR; } TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter); /* Set the OCREF clear selection bit */ SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); break; } default: status = HAL_ERROR; break; } if (status == HAL_OK) { switch (Channel) { case TIM_CHANNEL_1: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 1 */ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); } else { /* Disable the OCREF clear feature for Channel 1 */ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); } break; } case TIM_CHANNEL_2: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 2 */ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); } else { /* Disable the OCREF clear feature for Channel 2 */ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); } break; } case TIM_CHANNEL_3: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 3 */ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); } else { /* Disable the OCREF clear feature for Channel 3 */ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); } break; } case TIM_CHANNEL_4: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 4 */ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); } else { /* Disable the OCREF clear feature for Channel 4 */ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); } break; } case TIM_CHANNEL_5: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 5 */ SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); } else { /* Disable the OCREF clear feature for Channel 5 */ CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE); } break; } case TIM_CHANNEL_6: { if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) { /* Enable the OCREF clear feature for Channel 6 */ SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); } else { /* Disable the OCREF clear feature for Channel 6 */ CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE); } break; } default: break; } } htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return status; } /** * @brief Configures the clock source to be used * @param htim TIM handle * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that * contains the clock source information for the TIM peripheral. * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; /* Process Locked */ __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; /* Check the parameters */ assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ tmpsmcr = htim->Instance->SMCR; tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); htim->Instance->SMCR = tmpsmcr; switch (sClockSourceConfig->ClockSource) { case TIM_CLOCKSOURCE_INTERNAL: { assert_param(IS_TIM_INSTANCE(htim->Instance)); break; } case TIM_CLOCKSOURCE_ETRMODE1: { /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); /* Check ETR input conditioning related parameters */ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); /* Configure the ETR Clock source */ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); /* Select the External clock mode1 and the ETRF trigger */ tmpsmcr = htim->Instance->SMCR; tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); /* Write to TIMx SMCR */ htim->Instance->SMCR = tmpsmcr; break; } case TIM_CLOCKSOURCE_ETRMODE2: { /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); /* Check ETR input conditioning related parameters */ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); /* Configure the ETR Clock source */ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); /* Enable the External clock mode2 */ htim->Instance->SMCR |= TIM_SMCR_ECE; break; } case TIM_CLOCKSOURCE_TI1: { /* Check whether or not the timer instance supports external clock mode 1 */ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); /* Check TI1 input conditioning related parameters */ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); break; } case TIM_CLOCKSOURCE_TI2: { /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); /* Check TI2 input conditioning related parameters */ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); TIM_TI2_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); break; } case TIM_CLOCKSOURCE_TI1ED: { /* Check whether or not the timer instance supports external clock mode 1 */ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); /* Check TI1 input conditioning related parameters */ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter); TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); break; } case TIM_CLOCKSOURCE_ITR0: case TIM_CLOCKSOURCE_ITR1: case TIM_CLOCKSOURCE_ITR2: case TIM_CLOCKSOURCE_ITR3: { /* Check whether or not the timer instance supports internal trigger input */ assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); break; } default: status = HAL_ERROR; break; } htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return status; } /** * @brief Selects the signal connected to the TI1 input: direct from CH1_input * or a XOR combination between CH1_input, CH2_input & CH3_input * @param htim TIM handle. * @param TI1_Selection Indicate whether or not channel 1 is connected to the * output of a XOR gate. * This parameter can be one of the following values: * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 * pins are connected to the TI1 input (XOR combination) * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) { uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); /* Get the TIMx CR2 register value */ tmpcr2 = htim->Instance->CR2; /* Reset the TI1 selection */ tmpcr2 &= ~TIM_CR2_TI1S; /* Set the TI1 selection */ tmpcr2 |= TI1_Selection; /* Write to TIMxCR2 */ htim->Instance->CR2 = tmpcr2; return HAL_OK; } /** * @brief Configures the TIM in Slave mode * @param htim TIM handle. * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that * contains the selected trigger (internal trigger input, filtered * timer input or external trigger input) and the Slave mode * (Disable, Reset, Gated, Trigger, External clock mode 1). * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) { /* Check the parameters */ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) { htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_ERROR; } /* Disable Trigger Interrupt */ __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); /* Disable Trigger DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Configures the TIM in Slave mode in interrupt mode * @param htim TIM handle. * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that * contains the selected trigger (internal trigger input, filtered * timer input or external trigger input) and the Slave mode * (Disable, Reset, Gated, Trigger, External clock mode 1). * @retval HAL status */ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) { /* Check the parameters */ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); __HAL_LOCK(htim); htim->State = HAL_TIM_STATE_BUSY; if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) { htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_ERROR; } /* Enable Trigger Interrupt */ __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); /* Disable Trigger DMA request */ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); htim->State = HAL_TIM_STATE_READY; __HAL_UNLOCK(htim); return HAL_OK; } /** * @brief Read the captured value from Capture Compare unit * @param htim TIM handle. * @param Channel TIM Channels to be enabled * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 selected * @arg TIM_CHANNEL_2: TIM Channel 2 selected * @arg TIM_CHANNEL_3: TIM Channel 3 selected * @arg TIM_CHANNEL_4: TIM Channel 4 selected * @retval Captured value */ uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel) { uint32_t tmpreg = 0U; switch (Channel) { case TIM_CHANNEL_1: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); /* Return the capture 1 value */ tmpreg = htim->Instance->CCR1; break; } case TIM_CHANNEL_2: { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); /* Return the capture 2 value */ tmpreg = htim->Instance->CCR2; break; } case TIM_CHANNEL_3: { /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); /* Return the capture 3 value */ tmpreg = htim->Instance->CCR3; break; } case TIM_CHANNEL_4: { /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); /* Return the capture 4 value */ tmpreg = htim->Instance->CCR4; break; } default: break; } return tmpreg; } /** * @} */ /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions * @brief TIM Callbacks functions * @verbatim ============================================================================== ##### TIM Callbacks functions ##### ============================================================================== [..] This section provides TIM callback functions: (+) TIM Period elapsed callback (+) TIM Output Compare callback (+) TIM Input capture callback (+) TIM Trigger callback (+) TIM Error callback @endverbatim * @{ */ /** * @brief Period elapsed callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PeriodElapsedCallback could be implemented in the user file */ } /** * @brief Period elapsed half complete callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file */ } /** * @brief Output Compare callback in non-blocking mode * @param htim TIM OC handle * @retval None */ __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file */ } /** * @brief Input Capture callback in non-blocking mode * @param htim TIM IC handle * @retval None */ __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_CaptureCallback could be implemented in the user file */ } /** * @brief Input Capture half complete callback in non-blocking mode * @param htim TIM IC handle * @retval None */ __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file */ } /** * @brief PWM Pulse finished callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file */ } /** * @brief PWM Pulse finished half complete callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file */ } /** * @brief Hall Trigger detection callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_TriggerCallback could be implemented in the user file */ } /** * @brief Hall Trigger detection half complete callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file */ } /** * @brief Timer error callback in non-blocking mode * @param htim TIM handle * @retval None */ __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) { /* Prevent unused argument(s) compilation warning */ UNUSED(htim); /* NOTE : This function should not be modified, when the callback is needed, the HAL_TIM_ErrorCallback could be implemented in the user file */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /** * @brief Register a User TIM callback to be used instead of the weak predefined callback * @param htim tim handle * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID * @param pCallback pointer to the callback function * @retval status */ HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { return HAL_ERROR; } if (htim->State == HAL_TIM_STATE_READY) { switch (CallbackID) { case HAL_TIM_BASE_MSPINIT_CB_ID : htim->Base_MspInitCallback = pCallback; break; case HAL_TIM_BASE_MSPDEINIT_CB_ID : htim->Base_MspDeInitCallback = pCallback; break; case HAL_TIM_IC_MSPINIT_CB_ID : htim->IC_MspInitCallback = pCallback; break; case HAL_TIM_IC_MSPDEINIT_CB_ID : htim->IC_MspDeInitCallback = pCallback; break; case HAL_TIM_OC_MSPINIT_CB_ID : htim->OC_MspInitCallback = pCallback; break; case HAL_TIM_OC_MSPDEINIT_CB_ID : htim->OC_MspDeInitCallback = pCallback; break; case HAL_TIM_PWM_MSPINIT_CB_ID : htim->PWM_MspInitCallback = pCallback; break; case HAL_TIM_PWM_MSPDEINIT_CB_ID : htim->PWM_MspDeInitCallback = pCallback; break; case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : htim->OnePulse_MspInitCallback = pCallback; break; case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : htim->OnePulse_MspDeInitCallback = pCallback; break; case HAL_TIM_ENCODER_MSPINIT_CB_ID : htim->Encoder_MspInitCallback = pCallback; break; case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : htim->Encoder_MspDeInitCallback = pCallback; break; case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : htim->HallSensor_MspInitCallback = pCallback; break; case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : htim->HallSensor_MspDeInitCallback = pCallback; break; case HAL_TIM_PERIOD_ELAPSED_CB_ID : htim->PeriodElapsedCallback = pCallback; break; case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : htim->PeriodElapsedHalfCpltCallback = pCallback; break; case HAL_TIM_TRIGGER_CB_ID : htim->TriggerCallback = pCallback; break; case HAL_TIM_TRIGGER_HALF_CB_ID : htim->TriggerHalfCpltCallback = pCallback; break; case HAL_TIM_IC_CAPTURE_CB_ID : htim->IC_CaptureCallback = pCallback; break; case HAL_TIM_IC_CAPTURE_HALF_CB_ID : htim->IC_CaptureHalfCpltCallback = pCallback; break; case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : htim->OC_DelayElapsedCallback = pCallback; break; case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : htim->PWM_PulseFinishedCallback = pCallback; break; case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : htim->PWM_PulseFinishedHalfCpltCallback = pCallback; break; case HAL_TIM_ERROR_CB_ID : htim->ErrorCallback = pCallback; break; case HAL_TIM_COMMUTATION_CB_ID : htim->CommutationCallback = pCallback; break; case HAL_TIM_COMMUTATION_HALF_CB_ID : htim->CommutationHalfCpltCallback = pCallback; break; case HAL_TIM_BREAK_CB_ID : htim->BreakCallback = pCallback; break; case HAL_TIM_BREAK2_CB_ID : htim->Break2Callback = pCallback; break; default : /* Return error status */ status = HAL_ERROR; break; } } else if (htim->State == HAL_TIM_STATE_RESET) { switch (CallbackID) { case HAL_TIM_BASE_MSPINIT_CB_ID : htim->Base_MspInitCallback = pCallback; break; case HAL_TIM_BASE_MSPDEINIT_CB_ID : htim->Base_MspDeInitCallback = pCallback; break; case HAL_TIM_IC_MSPINIT_CB_ID : htim->IC_MspInitCallback = pCallback; break; case HAL_TIM_IC_MSPDEINIT_CB_ID : htim->IC_MspDeInitCallback = pCallback; break; case HAL_TIM_OC_MSPINIT_CB_ID : htim->OC_MspInitCallback = pCallback; break; case HAL_TIM_OC_MSPDEINIT_CB_ID : htim->OC_MspDeInitCallback = pCallback; break; case HAL_TIM_PWM_MSPINIT_CB_ID : htim->PWM_MspInitCallback = pCallback; break; case HAL_TIM_PWM_MSPDEINIT_CB_ID : htim->PWM_MspDeInitCallback = pCallback; break; case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : htim->OnePulse_MspInitCallback = pCallback; break; case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : htim->OnePulse_MspDeInitCallback = pCallback; break; case HAL_TIM_ENCODER_MSPINIT_CB_ID : htim->Encoder_MspInitCallback = pCallback; break; case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : htim->Encoder_MspDeInitCallback = pCallback; break; case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : htim->HallSensor_MspInitCallback = pCallback; break; case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : htim->HallSensor_MspDeInitCallback = pCallback; break; default : /* Return error status */ status = HAL_ERROR; break; } } else { /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a TIM callback * TIM callback is redirected to the weak predefined callback * @param htim tim handle * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID * @retval status */ HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if (htim->State == HAL_TIM_STATE_READY) { switch (CallbackID) { case HAL_TIM_BASE_MSPINIT_CB_ID : /* Legacy weak Base MspInit Callback */ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; break; case HAL_TIM_BASE_MSPDEINIT_CB_ID : /* Legacy weak Base Msp DeInit Callback */ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; break; case HAL_TIM_IC_MSPINIT_CB_ID : /* Legacy weak IC Msp Init Callback */ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; break; case HAL_TIM_IC_MSPDEINIT_CB_ID : /* Legacy weak IC Msp DeInit Callback */ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; break; case HAL_TIM_OC_MSPINIT_CB_ID : /* Legacy weak OC Msp Init Callback */ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; break; case HAL_TIM_OC_MSPDEINIT_CB_ID : /* Legacy weak OC Msp DeInit Callback */ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; break; case HAL_TIM_PWM_MSPINIT_CB_ID : /* Legacy weak PWM Msp Init Callback */ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; break; case HAL_TIM_PWM_MSPDEINIT_CB_ID : /* Legacy weak PWM Msp DeInit Callback */ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; break; case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : /* Legacy weak One Pulse Msp Init Callback */ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; break; case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : /* Legacy weak One Pulse Msp DeInit Callback */ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; break; case HAL_TIM_ENCODER_MSPINIT_CB_ID : /* Legacy weak Encoder Msp Init Callback */ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; break; case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : /* Legacy weak Encoder Msp DeInit Callback */ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; break; case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : /* Legacy weak Hall Sensor Msp Init Callback */ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; break; case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : /* Legacy weak Hall Sensor Msp DeInit Callback */ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; break; case HAL_TIM_PERIOD_ELAPSED_CB_ID : /* Legacy weak Period Elapsed Callback */ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; break; case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : /* Legacy weak Period Elapsed half complete Callback */ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; break; case HAL_TIM_TRIGGER_CB_ID : /* Legacy weak Trigger Callback */ htim->TriggerCallback = HAL_TIM_TriggerCallback; break; case HAL_TIM_TRIGGER_HALF_CB_ID : /* Legacy weak Trigger half complete Callback */ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; break; case HAL_TIM_IC_CAPTURE_CB_ID : /* Legacy weak IC Capture Callback */ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; break; case HAL_TIM_IC_CAPTURE_HALF_CB_ID : /* Legacy weak IC Capture half complete Callback */ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; break; case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : /* Legacy weak OC Delay Elapsed Callback */ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; break; case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : /* Legacy weak PWM Pulse Finished Callback */ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; break; case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : /* Legacy weak PWM Pulse Finished half complete Callback */ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; break; case HAL_TIM_ERROR_CB_ID : /* Legacy weak Error Callback */ htim->ErrorCallback = HAL_TIM_ErrorCallback; break; case HAL_TIM_COMMUTATION_CB_ID : /* Legacy weak Commutation Callback */ htim->CommutationCallback = HAL_TIMEx_CommutCallback; break; case HAL_TIM_COMMUTATION_HALF_CB_ID : /* Legacy weak Commutation half complete Callback */ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; break; case HAL_TIM_BREAK_CB_ID : /* Legacy weak Break Callback */ htim->BreakCallback = HAL_TIMEx_BreakCallback; break; case HAL_TIM_BREAK2_CB_ID : /* Legacy weak Break2 Callback */ htim->Break2Callback = HAL_TIMEx_Break2Callback; break; default : /* Return error status */ status = HAL_ERROR; break; } } else if (htim->State == HAL_TIM_STATE_RESET) { switch (CallbackID) { case HAL_TIM_BASE_MSPINIT_CB_ID : /* Legacy weak Base MspInit Callback */ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; break; case HAL_TIM_BASE_MSPDEINIT_CB_ID : /* Legacy weak Base Msp DeInit Callback */ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; break; case HAL_TIM_IC_MSPINIT_CB_ID : /* Legacy weak IC Msp Init Callback */ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; break; case HAL_TIM_IC_MSPDEINIT_CB_ID : /* Legacy weak IC Msp DeInit Callback */ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; break; case HAL_TIM_OC_MSPINIT_CB_ID : /* Legacy weak OC Msp Init Callback */ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; break; case HAL_TIM_OC_MSPDEINIT_CB_ID : /* Legacy weak OC Msp DeInit Callback */ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; break; case HAL_TIM_PWM_MSPINIT_CB_ID : /* Legacy weak PWM Msp Init Callback */ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; break; case HAL_TIM_PWM_MSPDEINIT_CB_ID : /* Legacy weak PWM Msp DeInit Callback */ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; break; case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : /* Legacy weak One Pulse Msp Init Callback */ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; break; case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : /* Legacy weak One Pulse Msp DeInit Callback */ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; break; case HAL_TIM_ENCODER_MSPINIT_CB_ID : /* Legacy weak Encoder Msp Init Callback */ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; break; case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : /* Legacy weak Encoder Msp DeInit Callback */ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; break; case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : /* Legacy weak Hall Sensor Msp Init Callback */ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; break; case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : /* Legacy weak Hall Sensor Msp DeInit Callback */ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; break; default : /* Return error status */ status = HAL_ERROR; break; } } else { /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions * @brief TIM Peripheral State functions * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection permits to get in run-time the status of the peripheral and the data flow. @endverbatim * @{ */ /** * @brief Return the TIM Base handle state. * @param htim TIM Base handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM OC handle state. * @param htim TIM Output Compare handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM PWM handle state. * @param htim TIM handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM Input Capture handle state. * @param htim TIM IC handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM One Pulse Mode handle state. * @param htim TIM OPM handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM Encoder Mode handle state. * @param htim TIM Encoder Interface handle * @retval HAL state */ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim) { return htim->State; } /** * @brief Return the TIM Encoder Mode handle state. * @param htim TIM handle * @retval Active channel */ HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim) { return htim->Channel; } /** * @brief Return actual state of the TIM channel. * @param htim TIM handle * @param Channel TIM Channel * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 * @arg TIM_CHANNEL_2: TIM Channel 2 * @arg TIM_CHANNEL_3: TIM Channel 3 * @arg TIM_CHANNEL_4: TIM Channel 4 * @arg TIM_CHANNEL_5: TIM Channel 5 * @arg TIM_CHANNEL_6: TIM Channel 6 * @retval TIM Channel state */ HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel) { HAL_TIM_ChannelStateTypeDef channel_state; /* Check the parameters */ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); return channel_state; } /** * @brief Return actual state of a DMA burst operation. * @param htim TIM handle * @retval DMA burst state */ HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim) { /* Check the parameters */ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); return htim->DMABurstState; } /** * @} */ /** * @} */ /** @defgroup TIM_Private_Functions TIM Private Functions * @{ */ /** * @brief TIM DMA error callback * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMAError(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); } else { htim->State = HAL_TIM_STATE_READY; } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->ErrorCallback(htim); #else HAL_TIM_ErrorCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Delay Pulse complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); } } else { /* nothing to do */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->PWM_PulseFinishedCallback(htim); #else HAL_TIM_PWM_PulseFinishedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Delay Pulse half complete callback. * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; } else { /* nothing to do */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->PWM_PulseFinishedHalfCpltCallback(htim); #else HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Capture complete callback. * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); } } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; if (hdma->Init.Mode == DMA_NORMAL) { TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); } } else { /* nothing to do */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureCallback(htim); #else HAL_TIM_IC_CaptureCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Capture half complete callback. * @param hdma pointer to DMA handle. * @retval None */ void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (hdma == htim->hdma[TIM_DMA_ID_CC1]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) { htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; } else { /* nothing to do */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->IC_CaptureHalfCpltCallback(htim); #else HAL_TIM_IC_CaptureHalfCpltCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; } /** * @brief TIM DMA Period Elapse complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) { htim->State = HAL_TIM_STATE_READY; } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->PeriodElapsedCallback(htim); #else HAL_TIM_PeriodElapsedCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief TIM DMA Period Elapse half complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->PeriodElapsedHalfCpltCallback(htim); #else HAL_TIM_PeriodElapsedHalfCpltCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief TIM DMA Trigger callback. * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) { htim->State = HAL_TIM_STATE_READY; } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->TriggerCallback(htim); #else HAL_TIM_TriggerCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief TIM DMA Trigger half complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) { TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) htim->TriggerHalfCpltCallback(htim); #else HAL_TIM_TriggerHalfCpltCallback(htim); #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ } /** * @brief Time Base configuration * @param TIMx TIM peripheral * @param Structure TIM Base configuration structure * @retval None */ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure) { uint32_t tmpcr1; tmpcr1 = TIMx->CR1; /* Set TIM Time Base Unit parameters ---------------------------------------*/ if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) { /* Select the Counter Mode */ tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); tmpcr1 |= Structure->CounterMode; } if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) { /* Set the clock division */ tmpcr1 &= ~TIM_CR1_CKD; tmpcr1 |= (uint32_t)Structure->ClockDivision; } /* Set the auto-reload preload */ MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); TIMx->CR1 = tmpcr1; /* Set the Autoreload value */ TIMx->ARR = (uint32_t)Structure->Period ; /* Set the Prescaler value */ TIMx->PSC = Structure->Prescaler; if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) { /* Set the Repetition Counter value */ TIMx->RCR = Structure->RepetitionCounter; } /* Generate an update event to reload the Prescaler and the repetition counter (only for advanced timer) value immediately */ TIMx->EGR = TIM_EGR_UG; } /** * @brief Timer Output Compare 1 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= ~TIM_CCER_CC1E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR1; /* Reset the Output Compare Mode Bits */ tmpccmrx &= ~TIM_CCMR1_OC1M; tmpccmrx &= ~TIM_CCMR1_CC1S; /* Select the Output Compare Mode */ tmpccmrx |= OC_Config->OCMode; /* Reset the Output Polarity level */ tmpccer &= ~TIM_CCER_CC1P; /* Set the Output Compare Polarity */ tmpccer |= OC_Config->OCPolarity; if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) { /* Check parameters */ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); /* Reset the Output N Polarity level */ tmpccer &= ~TIM_CCER_CC1NP; /* Set the Output N Polarity */ tmpccer |= OC_Config->OCNPolarity; /* Reset the Output N State */ tmpccer &= ~TIM_CCER_CC1NE; } if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Check parameters */ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= ~TIM_CR2_OIS1; tmpcr2 &= ~TIM_CR2_OIS1N; /* Set the Output Idle state */ tmpcr2 |= OC_Config->OCIdleState; /* Set the Output N Idle state */ tmpcr2 |= OC_Config->OCNIdleState; } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR1 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Timer Output Compare 2 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC2E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR1; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= ~TIM_CCMR1_OC2M; tmpccmrx &= ~TIM_CCMR1_CC2S; /* Select the Output Compare Mode */ tmpccmrx |= (OC_Config->OCMode << 8U); /* Reset the Output Polarity level */ tmpccer &= ~TIM_CCER_CC2P; /* Set the Output Compare Polarity */ tmpccer |= (OC_Config->OCPolarity << 4U); if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) { assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); /* Reset the Output N Polarity level */ tmpccer &= ~TIM_CCER_CC2NP; /* Set the Output N Polarity */ tmpccer |= (OC_Config->OCNPolarity << 4U); /* Reset the Output N State */ tmpccer &= ~TIM_CCER_CC2NE; } if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Check parameters */ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= ~TIM_CR2_OIS2; tmpcr2 &= ~TIM_CR2_OIS2N; /* Set the Output Idle state */ tmpcr2 |= (OC_Config->OCIdleState << 2U); /* Set the Output N Idle state */ tmpcr2 |= (OC_Config->OCNIdleState << 2U); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR2 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Timer Output Compare 3 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the Channel 3: Reset the CC2E Bit */ TIMx->CCER &= ~TIM_CCER_CC3E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR2 register value */ tmpccmrx = TIMx->CCMR2; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= ~TIM_CCMR2_OC3M; tmpccmrx &= ~TIM_CCMR2_CC3S; /* Select the Output Compare Mode */ tmpccmrx |= OC_Config->OCMode; /* Reset the Output Polarity level */ tmpccer &= ~TIM_CCER_CC3P; /* Set the Output Compare Polarity */ tmpccer |= (OC_Config->OCPolarity << 8U); if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) { assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); /* Reset the Output N Polarity level */ tmpccer &= ~TIM_CCER_CC3NP; /* Set the Output N Polarity */ tmpccer |= (OC_Config->OCNPolarity << 8U); /* Reset the Output N State */ tmpccer &= ~TIM_CCER_CC3NE; } if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Check parameters */ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= ~TIM_CR2_OIS3; tmpcr2 &= ~TIM_CR2_OIS3N; /* Set the Output Idle state */ tmpcr2 |= (OC_Config->OCIdleState << 4U); /* Set the Output N Idle state */ tmpcr2 |= (OC_Config->OCNIdleState << 4U); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR3 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Timer Output Compare 4 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= ~TIM_CCER_CC4E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR2 register value */ tmpccmrx = TIMx->CCMR2; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= ~TIM_CCMR2_OC4M; tmpccmrx &= ~TIM_CCMR2_CC4S; /* Select the Output Compare Mode */ tmpccmrx |= (OC_Config->OCMode << 8U); /* Reset the Output Polarity level */ tmpccer &= ~TIM_CCER_CC4P; /* Set the Output Compare Polarity */ tmpccer |= (OC_Config->OCPolarity << 12U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Check parameters */ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); /* Reset the Output Compare IDLE State */ tmpcr2 &= ~TIM_CR2_OIS4; /* Set the Output Idle state */ tmpcr2 |= (OC_Config->OCIdleState << 6U); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR4 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Timer Output Compare 5 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the output: Reset the CCxE Bit */ TIMx->CCER &= ~TIM_CCER_CC5E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR3; /* Reset the Output Compare Mode Bits */ tmpccmrx &= ~(TIM_CCMR3_OC5M); /* Select the Output Compare Mode */ tmpccmrx |= OC_Config->OCMode; /* Reset the Output Polarity level */ tmpccer &= ~TIM_CCER_CC5P; /* Set the Output Compare Polarity */ tmpccer |= (OC_Config->OCPolarity << 16U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Reset the Output Compare IDLE State */ tmpcr2 &= ~TIM_CR2_OIS5; /* Set the Output Idle state */ tmpcr2 |= (OC_Config->OCIdleState << 8U); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR3 */ TIMx->CCMR3 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR5 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Timer Output Compare 6 configuration * @param TIMx to select the TIM peripheral * @param OC_Config The output configuration structure * @retval None */ static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) { uint32_t tmpccmrx; uint32_t tmpccer; uint32_t tmpcr2; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Disable the output: Reset the CCxE Bit */ TIMx->CCER &= ~TIM_CCER_CC6E; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR3; /* Reset the Output Compare Mode Bits */ tmpccmrx &= ~(TIM_CCMR3_OC6M); /* Select the Output Compare Mode */ tmpccmrx |= (OC_Config->OCMode << 8U); /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC6P; /* Set the Output Compare Polarity */ tmpccer |= (OC_Config->OCPolarity << 20U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { /* Reset the Output Compare IDLE State */ tmpcr2 &= ~TIM_CR2_OIS6; /* Set the Output Idle state */ tmpcr2 |= (OC_Config->OCIdleState << 10U); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR3 */ TIMx->CCMR3 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR6 = OC_Config->Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Slave Timer configuration function * @param htim TIM handle * @param sSlaveConfig Slave timer configuration * @retval None */ static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) { HAL_StatusTypeDef status = HAL_OK; uint32_t tmpsmcr; uint32_t tmpccmr1; uint32_t tmpccer; /* Get the TIMx SMCR register value */ tmpsmcr = htim->Instance->SMCR; /* Reset the Trigger Selection Bits */ tmpsmcr &= ~TIM_SMCR_TS; /* Set the Input Trigger source */ tmpsmcr |= sSlaveConfig->InputTrigger; /* Reset the slave mode Bits */ tmpsmcr &= ~TIM_SMCR_SMS; /* Set the slave mode */ tmpsmcr |= sSlaveConfig->SlaveMode; /* Write to TIMx SMCR */ htim->Instance->SMCR = tmpsmcr; /* Configure the trigger prescaler, filter, and polarity */ switch (sSlaveConfig->InputTrigger) { case TIM_TS_ETRF: { /* Check the parameters */ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); /* Configure the ETR Trigger source */ TIM_ETR_SetConfig(htim->Instance, sSlaveConfig->TriggerPrescaler, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); break; } case TIM_TS_TI1F_ED: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) { return HAL_ERROR; } /* Disable the Channel 1: Reset the CC1E Bit */ tmpccer = htim->Instance->CCER; htim->Instance->CCER &= ~TIM_CCER_CC1E; tmpccmr1 = htim->Instance->CCMR1; /* Set the filter */ tmpccmr1 &= ~TIM_CCMR1_IC1F; tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); /* Write to TIMx CCMR1 and CCER registers */ htim->Instance->CCMR1 = tmpccmr1; htim->Instance->CCER = tmpccer; break; } case TIM_TS_TI1FP1: { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); /* Configure TI1 Filter and Polarity */ TIM_TI1_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); break; } case TIM_TS_TI2FP2: { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); /* Configure TI2 Filter and Polarity */ TIM_TI2_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter); break; } case TIM_TS_ITR0: case TIM_TS_ITR1: case TIM_TS_ITR2: case TIM_TS_ITR3: { /* Check the parameter */ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); break; } default: status = HAL_ERROR; break; } return status; } /** * @brief Configure the TI1 as Input. * @param TIMx to select the TIM peripheral. * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 * (on channel2 path) is used as the input signal. Therefore CCMR1 must be * protected against un-initialized filter and polarity values. */ void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { uint32_t tmpccmr1; uint32_t tmpccer; /* Disable the Channel 1: Reset the CC1E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC1E; tmpccmr1 = TIMx->CCMR1; /* Select the Input */ if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) { tmpccmr1 &= ~TIM_CCMR1_CC1S; tmpccmr1 |= TIM_ICSelection; } else { tmpccmr1 |= TIM_CCMR1_CC1S_0; } /* Set the filter */ tmpccmr1 &= ~TIM_CCMR1_IC1F; tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); /* Select the Polarity and set the CC1E Bit */ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1; TIMx->CCER = tmpccer; } /** * @brief Configure the Polarity and Filter for TI1. * @param TIMx to select the TIM peripheral. * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) { uint32_t tmpccmr1; uint32_t tmpccer; /* Disable the Channel 1: Reset the CC1E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC1E; tmpccmr1 = TIMx->CCMR1; /* Set the filter */ tmpccmr1 &= ~TIM_CCMR1_IC1F; tmpccmr1 |= (TIM_ICFilter << 4U); /* Select the Polarity and set the CC1E Bit */ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); tmpccer |= TIM_ICPolarity; /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1; TIMx->CCER = tmpccer; } /** * @brief Configure the TI2 as Input. * @param TIMx to select the TIM peripheral * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 * (on channel1 path) is used as the input signal. Therefore CCMR1 must be * protected against un-initialized filter and polarity values. */ static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { uint32_t tmpccmr1; uint32_t tmpccer; /* Disable the Channel 2: Reset the CC2E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC2E; tmpccmr1 = TIMx->CCMR1; /* Select the Input */ tmpccmr1 &= ~TIM_CCMR1_CC2S; tmpccmr1 |= (TIM_ICSelection << 8U); /* Set the filter */ tmpccmr1 &= ~TIM_CCMR1_IC2F; tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); /* Select the Polarity and set the CC2E Bit */ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1 ; TIMx->CCER = tmpccer; } /** * @brief Configure the Polarity and Filter for TI2. * @param TIMx to select the TIM peripheral. * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) { uint32_t tmpccmr1; uint32_t tmpccer; /* Disable the Channel 2: Reset the CC2E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC2E; tmpccmr1 = TIMx->CCMR1; /* Set the filter */ tmpccmr1 &= ~TIM_CCMR1_IC2F; tmpccmr1 |= (TIM_ICFilter << 12U); /* Select the Polarity and set the CC2E Bit */ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (TIM_ICPolarity << 4U); /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1 ; TIMx->CCER = tmpccer; } /** * @brief Configure the TI3 as Input. * @param TIMx to select the TIM peripheral * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be * protected against un-initialized filter and polarity values. */ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { uint32_t tmpccmr2; uint32_t tmpccer; /* Disable the Channel 3: Reset the CC3E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC3E; tmpccmr2 = TIMx->CCMR2; /* Select the Input */ tmpccmr2 &= ~TIM_CCMR2_CC3S; tmpccmr2 |= TIM_ICSelection; /* Set the filter */ tmpccmr2 &= ~TIM_CCMR2_IC3F; tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); /* Select the Polarity and set the CC3E Bit */ tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); /* Write to TIMx CCMR2 and CCER registers */ TIMx->CCMR2 = tmpccmr2; TIMx->CCER = tmpccer; } /** * @brief Configure the TI4 as Input. * @param TIMx to select the TIM peripheral * @param TIM_ICPolarity The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPOLARITY_RISING * @arg TIM_ICPOLARITY_FALLING * @arg TIM_ICPOLARITY_BOTHEDGE * @param TIM_ICSelection specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. * @param TIM_ICFilter Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be * protected against un-initialized filter and polarity values. * @retval None */ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) { uint32_t tmpccmr2; uint32_t tmpccer; /* Disable the Channel 4: Reset the CC4E Bit */ tmpccer = TIMx->CCER; TIMx->CCER &= ~TIM_CCER_CC4E; tmpccmr2 = TIMx->CCMR2; /* Select the Input */ tmpccmr2 &= ~TIM_CCMR2_CC4S; tmpccmr2 |= (TIM_ICSelection << 8U); /* Set the filter */ tmpccmr2 &= ~TIM_CCMR2_IC4F; tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); /* Select the Polarity and set the CC4E Bit */ tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); /* Write to TIMx CCMR2 and CCER registers */ TIMx->CCMR2 = tmpccmr2; TIMx->CCER = tmpccer ; } /** * @brief Selects the Input Trigger source * @param TIMx to select the TIM peripheral * @param InputTriggerSource The Input Trigger source. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal Trigger 0 * @arg TIM_TS_ITR1: Internal Trigger 1 * @arg TIM_TS_ITR2: Internal Trigger 2 * @arg TIM_TS_ITR3: Internal Trigger 3 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 * @arg TIM_TS_ETRF: External Trigger input * @retval None */ static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) { uint32_t tmpsmcr; /* Get the TIMx SMCR register value */ tmpsmcr = TIMx->SMCR; /* Reset the TS Bits */ tmpsmcr &= ~TIM_SMCR_TS; /* Set the Input Trigger source and the slave mode*/ tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; } /** * @brief Configures the TIMx External Trigger (ETR). * @param TIMx to select the TIM peripheral * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. * This parameter can be one of the following values: * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. * @param TIM_ExtTRGPolarity The external Trigger Polarity. * This parameter can be one of the following values: * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. * @param ExtTRGFilter External Trigger Filter. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) { uint32_t tmpsmcr; tmpsmcr = TIMx->SMCR; /* Reset the ETR Bits */ tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); /* Set the Prescaler, the Filter value and the Polarity */ tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; } /** * @brief Enables or disables the TIM Capture Compare Channel x. * @param TIMx to select the TIM peripheral * @param Channel specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_CHANNEL_1: TIM Channel 1 * @arg TIM_CHANNEL_2: TIM Channel 2 * @arg TIM_CHANNEL_3: TIM Channel 3 * @arg TIM_CHANNEL_4: TIM Channel 4 * @arg TIM_CHANNEL_5: TIM Channel 5 selected * @arg TIM_CHANNEL_6: TIM Channel 6 selected * @param ChannelState specifies the TIM Channel CCxE bit new state. * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. * @retval None */ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) { uint32_t tmp; /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_TIM_CHANNELS(Channel)); tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ /* Reset the CCxE Bit */ TIMx->CCER &= ~tmp; /* Set or reset the CCxE Bit */ TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ } #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) /** * @brief Reset interrupt callbacks to the legacy weak callbacks. * @param htim pointer to a TIM_HandleTypeDef structure that contains * the configuration information for TIM module. * @retval None */ void TIM_ResetCallback(TIM_HandleTypeDef *htim) { /* Reset the TIM callback to the legacy weak callbacks */ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; htim->TriggerCallback = HAL_TIM_TriggerCallback; htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; htim->ErrorCallback = HAL_TIM_ErrorCallback; htim->CommutationCallback = HAL_TIMEx_CommutCallback; htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; htim->BreakCallback = HAL_TIMEx_BreakCallback; htim->Break2Callback = HAL_TIMEx_Break2Callback; } #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ /** * @} */ #endif /* HAL_TIM_MODULE_ENABLED */ /** * @} */ /** * @} */