micro_climate/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_ll_fmc.c

862 lines
31 KiB
C

/**
******************************************************************************
* @file stm32l4xx_ll_fmc.c
* @author MCD Application Team
* @brief FMC Low Layer HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Flexible Memory Controller (FMC) peripheral memories:
* + Initialization/de-initialization functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### FMC peripheral features #####
==============================================================================
[..] The Flexible memory controller (FMC) includes following memory controllers:
(+) The NOR/PSRAM memory controller
(+) The NAND memory controller
[..] The FMC functional block makes the interface with synchronous and asynchronous static
memories. Its main purposes are:
(+) to translate AHB transactions into the appropriate external device protocol
(+) to meet the access time requirements of the external memory devices
[..] All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique Chip Select. The FMC performs
only one access at a time to an external device.
The main features of the FMC controller are the following:
(+) Interface with static-memory mapped devices including:
(++) Static random access memory (SRAM)
(++) Read-only memory (ROM)
(++) NOR Flash memory/OneNAND Flash memory
(++) PSRAM (4 memory banks)
(++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of
data
(+) Independent Chip Select control for each memory bank
(+) Independent configuration for each memory bank
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
#if defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) \
|| defined(HAL_SRAM_MODULE_ENABLED)
/** @defgroup FMC_LL FMC Low Layer
* @brief FMC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FMC_LL_Private_Constants FMC Low Layer Private Constants
* @{
*/
/* ----------------------- FMC registers bit mask --------------------------- */
#if defined(FMC_BANK1)
/* --- BCR Register ---*/
/* BCR register clear mask */
/* --- BTR Register ---*/
/* BTR register clear mask */
#if defined(FMC_BTRx_DATAHLD)
#define BTR_CLEAR_MASK ((uint32_t)(FMC_BTRx_ADDSET | FMC_BTRx_ADDHLD |\
FMC_BTRx_DATAST | FMC_BTRx_BUSTURN |\
FMC_BTRx_CLKDIV | FMC_BTRx_DATLAT |\
FMC_BTRx_ACCMOD | FMC_BTRx_DATAHLD))
#else
#define BTR_CLEAR_MASK ((uint32_t)(FMC_BTRx_ADDSET | FMC_BTRx_ADDHLD |\
FMC_BTRx_DATAST | FMC_BTRx_BUSTURN |\
FMC_BTRx_CLKDIV | FMC_BTRx_DATLAT |\
FMC_BTRx_ACCMOD))
#endif /* FMC_BTRx_DATAHLD */
/* --- BWTR Register ---*/
/* BWTR register clear mask */
#if defined(FMC_BWTRx_DATAHLD)
#define BWTR_CLEAR_MASK ((uint32_t)(FMC_BWTRx_ADDSET | FMC_BWTRx_ADDHLD |\
FMC_BWTRx_DATAST | FMC_BWTRx_BUSTURN |\
FMC_BWTRx_ACCMOD | FMC_BWTRx_DATAHLD))
#else
#define BWTR_CLEAR_MASK ((uint32_t)(FMC_BWTRx_ADDSET | FMC_BWTRx_ADDHLD |\
FMC_BWTRx_DATAST | FMC_BWTRx_BUSTURN |\
FMC_BWTRx_ACCMOD))
#endif /* FMC_BWTRx_DATAHLD */
#endif /* FMC_BANK1 */
#if defined(FMC_BANK3)
/* --- PCR Register ---*/
/* PCR register clear mask */
#define PCR_CLEAR_MASK ((uint32_t)(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | \
FMC_PCR_PTYP | FMC_PCR_PWID | \
FMC_PCR_ECCEN | FMC_PCR_TCLR | \
FMC_PCR_TAR | FMC_PCR_ECCPS))
/* --- PMEM Register ---*/
/* PMEM register clear mask */
#define PMEM_CLEAR_MASK ((uint32_t)(FMC_PMEM_MEMSET | FMC_PMEM_MEMWAIT |\
FMC_PMEM_MEMHOLD | FMC_PMEM_MEMHIZ))
/* --- PATT Register ---*/
/* PATT register clear mask */
#define PATT_CLEAR_MASK ((uint32_t)(FMC_PATT_ATTSET | FMC_PATT_ATTWAIT |\
FMC_PATT_ATTHOLD | FMC_PATT_ATTHIZ))
#endif /* FMC_BANK3 */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FMC_LL_Exported_Functions FMC Low Layer Exported Functions
* @{
*/
#if defined(FMC_BANK1)
/** @defgroup FMC_LL_Exported_Functions_NORSRAM FMC Low Layer NOR SRAM Exported Functions
* @brief NORSRAM Controller functions
*
@verbatim
==============================================================================
##### How to use NORSRAM device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC NORSRAM banks in order
to run the NORSRAM external devices.
(+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit()
(+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init()
(+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init()
(+) FMC NORSRAM bank extended timing configuration using the function
FMC_NORSRAM_Extended_Timing_Init()
(+) FMC NORSRAM bank enable/disable write operation using the functions
FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable()
@endverbatim
* @{
*/
/** @defgroup FMC_LL_NORSRAM_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC NORSRAM interface
(+) De-initialize the FMC NORSRAM interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initialize the FMC_NORSRAM device according to the specified
* control parameters in the FMC_NORSRAM_InitTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Init Pointer to NORSRAM Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_InitTypeDef *Init)
{
uint32_t flashaccess;
uint32_t btcr_reg;
uint32_t mask;
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank));
assert_param(IS_FMC_MUX(Init->DataAddressMux));
assert_param(IS_FMC_MEMORY(Init->MemoryType));
assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth));
assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode));
assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity));
assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive));
assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation));
assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal));
assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode));
assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait));
assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst));
assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock));
#if defined(FMC_BCR1_WFDIS)
assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo));
#endif /* FMC_BCR1_WFDIS */
assert_param(IS_FMC_PAGESIZE(Init->PageSize));
#if defined(FMC_BCRx_NBLSET)
assert_param(IS_FMC_NBL_SETUPTIME(Init->NBLSetupTime));
#endif /* FMC_BCRx_NBLSET */
#if defined(FMC_PCSCNTR_CSCOUNT)
assert_param(IS_FUNCTIONAL_STATE(Init->MaxChipSelectPulse));
#endif /* FMC_PCSCNTR_CSCOUNT */
/* Disable NORSRAM Device */
__FMC_NORSRAM_DISABLE(Device, Init->NSBank);
/* Set NORSRAM device control parameters */
if (Init->MemoryType == FMC_MEMORY_TYPE_NOR)
{
flashaccess = FMC_NORSRAM_FLASH_ACCESS_ENABLE;
}
else
{
flashaccess = FMC_NORSRAM_FLASH_ACCESS_DISABLE;
}
btcr_reg = (flashaccess | \
Init->DataAddressMux | \
Init->MemoryType | \
Init->MemoryDataWidth | \
Init->BurstAccessMode | \
Init->WaitSignalPolarity | \
Init->WaitSignalActive | \
Init->WriteOperation | \
Init->WaitSignal | \
Init->ExtendedMode | \
Init->AsynchronousWait | \
Init->WriteBurst);
btcr_reg |= Init->ContinuousClock;
#if defined(FMC_BCR1_WFDIS)
btcr_reg |= Init->WriteFifo;
#endif /* FMC_BCR1_WFDIS */
#if defined(FMC_BCRx_NBLSET)
btcr_reg |= Init->NBLSetupTime;
#endif /* FMC_BCRx_NBLSET */
btcr_reg |= Init->PageSize;
mask = (FMC_BCRx_MBKEN |
FMC_BCRx_MUXEN |
FMC_BCRx_MTYP |
FMC_BCRx_MWID |
FMC_BCRx_FACCEN |
FMC_BCRx_BURSTEN |
FMC_BCRx_WAITPOL |
FMC_BCRx_WAITCFG |
FMC_BCRx_WREN |
FMC_BCRx_WAITEN |
FMC_BCRx_EXTMOD |
FMC_BCRx_ASYNCWAIT |
FMC_BCRx_CBURSTRW);
mask |= FMC_BCR1_CCLKEN;
#if defined(FMC_BCR1_WFDIS)
mask |= FMC_BCR1_WFDIS;
#endif /* FMC_BCR1_WFDIS */
#if defined(FMC_BCRx_NBLSET)
mask |= FMC_BCRx_NBLSET;
#endif /* FMC_BCRx_NBLSET */
mask |= FMC_BCRx_CPSIZE;
MODIFY_REG(Device->BTCR[Init->NSBank], mask, btcr_reg);
/* Configure synchronous mode when Continuous clock is enabled for bank2..4 */
if ((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1))
{
MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN, Init->ContinuousClock);
}
#if defined(FMC_BCR1_WFDIS)
if (Init->NSBank != FMC_NORSRAM_BANK1)
{
/* Configure Write FIFO mode when Write Fifo is enabled for bank2..4 */
SET_BIT(Device->BTCR[FMC_NORSRAM_BANK1], (uint32_t)(Init->WriteFifo));
}
#endif /* FMC_BCR1_WFDIS */
#if defined(FMC_PCSCNTR_CSCOUNT)
/* Check PSRAM chip select counter state */
if (Init->MaxChipSelectPulse == ENABLE)
{
/* Check the parameters */
assert_param(IS_FMC_MAX_CHIP_SELECT_PULSE_TIME(Init->MaxChipSelectPulseTime));
/* Configure PSRAM chip select counter value */
MODIFY_REG(Device->PCSCNTR, FMC_PCSCNTR_CSCOUNT, (uint32_t)(Init->MaxChipSelectPulseTime));
/* Enable PSRAM chip select counter for the bank */
switch (Init->NSBank)
{
case FMC_NORSRAM_BANK1 :
SET_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB1EN);
break;
case FMC_NORSRAM_BANK2 :
SET_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB2EN);
break;
case FMC_NORSRAM_BANK3 :
SET_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB3EN);
break;
default :
SET_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB4EN);
break;
}
}
#endif /* FMC_PCSCNTR_CSCOUNT */
return HAL_OK;
}
/**
* @brief DeInitialize the FMC_NORSRAM peripheral
* @param Device Pointer to NORSRAM device instance
* @param ExDevice Pointer to NORSRAM extended mode device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Disable the FMC_NORSRAM device */
__FMC_NORSRAM_DISABLE(Device, Bank);
/* De-initialize the FMC_NORSRAM device */
/* FMC_NORSRAM_BANK1 */
if (Bank == FMC_NORSRAM_BANK1)
{
Device->BTCR[Bank] = 0x000030DBU;
}
/* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */
else
{
Device->BTCR[Bank] = 0x000030D2U;
}
Device->BTCR[Bank + 1U] = 0x0FFFFFFFU;
ExDevice->BWTR[Bank] = 0x0FFFFFFFU;
#if defined(FMC_PCSCNTR_CSCOUNT)
/* De-initialize PSRAM chip select counter */
switch (Bank)
{
case FMC_NORSRAM_BANK1 :
CLEAR_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB1EN);
break;
case FMC_NORSRAM_BANK2 :
CLEAR_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB2EN);
break;
case FMC_NORSRAM_BANK3 :
CLEAR_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB3EN);
break;
default :
CLEAR_BIT(Device->PCSCNTR, FMC_PCSCNTR_CNTB4EN);
break;
}
#endif /* FMC_PCSCNTR_CSCOUNT */
return HAL_OK;
}
/**
* @brief Initialize the FMC_NORSRAM Timing according to the specified
* parameters in the FMC_NORSRAM_TimingTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Timing Pointer to NORSRAM Timing structure
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank)
{
uint32_t tmpr;
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime));
#if defined(FMC_BTRx_DATAHLD)
assert_param(IS_FMC_DATAHOLD_DURATION(Timing->DataHoldTime));
#endif /* FMC_BTRx_DATAHLD */
assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime));
assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration));
assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision));
assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency));
assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Set FMC_NORSRAM device timing parameters */
#if defined(FMC_BTRx_DATAHLD)
MODIFY_REG(Device->BTCR[Bank + 1U], BTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BTRx_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BTRx_DATAST_Pos) |
((Timing->DataHoldTime) << FMC_BTRx_DATAHLD_Pos) |
((Timing->BusTurnAroundDuration) << FMC_BTRx_BUSTURN_Pos) |
(((Timing->CLKDivision) - 1U) << FMC_BTRx_CLKDIV_Pos) |
(((Timing->DataLatency) - 2U) << FMC_BTRx_DATLAT_Pos) |
(Timing->AccessMode)));
#else /* FMC_BTRx_DATAHLD */
MODIFY_REG(Device->BTCR[Bank + 1U], BTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BTRx_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BTRx_DATAST_Pos) |
((Timing->BusTurnAroundDuration) << FMC_BTRx_BUSTURN_Pos) |
(((Timing->CLKDivision) - 1U) << FMC_BTRx_CLKDIV_Pos) |
(((Timing->DataLatency) - 2U) << FMC_BTRx_DATLAT_Pos) |
(Timing->AccessMode)));
#endif /* FMC_BTRx_DATAHLD */
/* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */
if (HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN))
{
tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1U] & ~((0x0FU) << FMC_BTRx_CLKDIV_Pos));
tmpr |= (uint32_t)(((Timing->CLKDivision) - 1U) << FMC_BTRx_CLKDIV_Pos);
MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1 + 1U], FMC_BTRx_CLKDIV, tmpr);
}
return HAL_OK;
}
/**
* @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified
* parameters in the FMC_NORSRAM_TimingTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Timing Pointer to NORSRAM Timing structure
* @param Bank NORSRAM bank number
* @param ExtendedMode FMC Extended Mode
* This parameter can be one of the following values:
* @arg FMC_EXTENDED_MODE_DISABLE
* @arg FMC_EXTENDED_MODE_ENABLE
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device,
FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank,
uint32_t ExtendedMode)
{
/* Check the parameters */
assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode));
/* Set NORSRAM device timing register for write configuration, if extended mode is used */
if (ExtendedMode == FMC_EXTENDED_MODE_ENABLE)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device));
assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime));
assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime));
#if defined(FMC_BTRx_DATAHLD)
assert_param(IS_FMC_DATAHOLD_DURATION(Timing->DataHoldTime));
#endif /* FMC_BTRx_DATAHLD */
assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration));
assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Set NORSRAM device timing register for write configuration, if extended mode is used */
#if defined(FMC_BTRx_DATAHLD)
MODIFY_REG(Device->BWTR[Bank], BWTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BWTRx_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BWTRx_DATAST_Pos) |
((Timing->DataHoldTime) << FMC_BWTRx_DATAHLD_Pos) |
Timing->AccessMode |
((Timing->BusTurnAroundDuration) << FMC_BWTRx_BUSTURN_Pos)));
#else /* FMC_BTRx_DATAHLD */
MODIFY_REG(Device->BWTR[Bank], BWTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BWTRx_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BWTRx_DATAST_Pos) |
Timing->AccessMode |
((Timing->BusTurnAroundDuration) << FMC_BWTRx_BUSTURN_Pos)));
#endif /* FMC_BTRx_DATAHLD */
}
else
{
Device->BWTR[Bank] = 0x0FFFFFFFU;
}
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2
* @brief management functions
*
@verbatim
==============================================================================
##### FMC_NORSRAM Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the FMC NORSRAM interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically FMC_NORSRAM write operation.
* @param Device Pointer to NORSRAM device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Enable write operation */
SET_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE);
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NORSRAM write operation.
* @param Device Pointer to NORSRAM device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Disable write operation */
CLEAR_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE);
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /* FMC_BANK1 */
#if defined(FMC_BANK3)
/** @defgroup FMC_LL_Exported_Functions_NAND FMC Low Layer NAND Exported Functions
* @brief NAND Controller functions
*
@verbatim
==============================================================================
##### How to use NAND device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC NAND banks in order
to run the NAND external devices.
(+) FMC NAND bank reset using the function FMC_NAND_DeInit()
(+) FMC NAND bank control configuration using the function FMC_NAND_Init()
(+) FMC NAND bank common space timing configuration using the function
FMC_NAND_CommonSpace_Timing_Init()
(+) FMC NAND bank attribute space timing configuration using the function
FMC_NAND_AttributeSpace_Timing_Init()
(+) FMC NAND bank enable/disable ECC correction feature using the functions
FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable()
(+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC()
@endverbatim
* @{
*/
/** @defgroup FMC_LL_NAND_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC NAND interface
(+) De-initialize the FMC NAND interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initializes the FMC_NAND device according to the specified
* control parameters in the FMC_NAND_HandleTypeDef
* @param Device Pointer to NAND device instance
* @param Init Pointer to NAND Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Init->NandBank));
assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature));
assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth));
assert_param(IS_FMC_ECC_STATE(Init->EccComputation));
assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize));
assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime));
assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime));
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PCR, PCR_CLEAR_MASK, (Init->Waitfeature |
FMC_PCR_MEMORY_TYPE_NAND |
Init->MemoryDataWidth |
Init->EccComputation |
Init->ECCPageSize |
((Init->TCLRSetupTime) << FMC_PCR_TCLR_Pos) |
((Init->TARSetupTime) << FMC_PCR_TAR_Pos)));
return HAL_OK;
}
/**
* @brief Initializes the FMC_NAND Common space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to NAND device instance
* @param Timing Pointer to NAND timing structure
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PMEM, PMEM_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PMEM_MEMWAIT_Pos) |
((Timing->HoldSetupTime) << FMC_PMEM_MEMHOLD_Pos) |
((Timing->HiZSetupTime) << FMC_PMEM_MEMHIZ_Pos)));
return HAL_OK;
}
/**
* @brief Initializes the FMC_NAND Attribute space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to NAND device instance
* @param Timing Pointer to NAND timing structure
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PATT, PATT_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PATT_ATTWAIT_Pos) |
((Timing->HoldSetupTime) << FMC_PATT_ATTHOLD_Pos) |
((Timing->HiZSetupTime) << FMC_PATT_ATTHIZ_Pos)));
return HAL_OK;
}
/**
* @brief DeInitializes the FMC_NAND device
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Disable the NAND Bank */
__FMC_NAND_DISABLE(Device, Bank);
/* De-initialize the NAND Bank */
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* Set the FMC_NAND_BANK3 registers to their reset values */
WRITE_REG(Device->PCR, 0x00000018U);
WRITE_REG(Device->SR, 0x00000040U);
WRITE_REG(Device->PMEM, 0xFCFCFCFCU);
WRITE_REG(Device->PATT, 0xFCFCFCFCU);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_FMC_NAND_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
==============================================================================
##### FMC_NAND Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the FMC NAND interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Enable ECC feature */
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
SET_BIT(Device->PCR, FMC_PCR_ECCEN);
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Disable ECC feature */
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
CLEAR_BIT(Device->PCR, FMC_PCR_ECCEN);
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param ECCval Pointer to ECC value
* @param Bank NAND bank number
* @param Timeout Timeout wait value
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank,
uint32_t Timeout)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FIFO is empty */
while (__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
return HAL_TIMEOUT;
}
}
}
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* Get the ECCR register value */
*ECCval = (uint32_t)Device->ECCR;
return HAL_OK;
}
/**
* @}
*/
#endif /* FMC_BANK3 */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_NOR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/