micro_climate/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_pssi.c

1800 lines
54 KiB
C

/**
******************************************************************************
* @file stm32l4xx_hal_pssi.c
* @author MCD Application Team
* @brief PSSI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Parallel Synchronous Slave Interface (PSSI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and Errors functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The PSSI HAL driver can be used as follows:
(#) Declare a PSSI_HandleTypeDef handle structure, for example:
PSSI_HandleTypeDef hpssi;
(#) Initialize the PSSI low level resources by implementing the @ref HAL_PSSI_MspInit() API:
(##) Enable the PSSIx interface clock
(##) PSSI pins configuration
(+++) Enable the clock for the PSSI GPIOs
(+++) Configure PSSI pins as alternate function open-drain
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the PSSIx interrupt priority
(+++) Enable the NVIC PSSI IRQ Channel
(##) DMA Configuration if you need to use DMA process
(+++) Declare DMA_HandleTypeDef handles structure for the transmit and receive
(+++) Enable the DMAx interface clock
(+++) Configure the DMA handle parameters
(+++) Configure the DMA Tx and Rx
(+++) Associate the initialized DMA handle to the hpssi DMA Tx and Rx handle
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on
the DMA Tx and Rx
(#) Configure the Communication Bus Width, Control Signals, Input Polarity and Output Polarity
in the hpssi Init structure.
(#) Initialize the PSSI registers by calling the @ref HAL_PSSI_Init(), configure also the low level Hardware
(GPIO, CLOCK, NVIC...etc) by calling the customized @ref HAL_PSSI_MspInit(&hpssi) API.
(#) For PSSI IO operations, two operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Transmit an amount of data by byte in blocking mode using @ref HAL_PSSI_Transmit()
(+) Receive an amount of data by byte in blocking mode using @ref HAL_PSSI_Receive()
*** DMA mode IO operation ***
==============================
[..]
(+) Transmit an amount of data in non-blocking mode (DMA) using
@ref HAL_PSSI_Transmit_DMA()
(+) At transmission end of transfer, @ref HAL_PSSI_TxCpltCallback() is executed and user can
add his own code by customization of function pointer @ref HAL_PSSI_TxCpltCallback()
(+) Receive an amount of data in non-blocking mode (DMA) using
@ref HAL_PSSI_Receive_DMA()
(+) At reception end of transfer, @ref HAL_PSSI_RxCpltCallback() is executed and user can
add his own code by customization of function pointer @ref HAL_PSSI_RxCpltCallback()
(+) In case of transfer Error, @ref HAL_PSSI_ErrorCallback() function is executed and user can
add his own code by customization of function pointer @ref HAL_PSSI_ErrorCallback()
(+) Abort a PSSI process communication with Interrupt using @ref HAL_PSSI_Abort_IT()
(+) End of abort process, @ref HAL_PSSI_AbortCpltCallback() is executed and user can
add his own code by customization of function pointer @ref HAL_PSSI_AbortCpltCallback()
*** PSSI HAL driver macros list ***
==================================
[..]
Below the list of most used macros in PSSI HAL driver.
(+) @ref HAL_PSSI_ENABLE : Enable the PSSI peripheral
(+) @ref HAL_PSSI_DISABLE : Disable the PSSI peripheral
(+) @ref HAL_PSSI_GET_FLAG : Check whether the specified PSSI flag is set or not
(+) @ref HAL_PSSI_CLEAR_FLAG : Clear the specified PSSI pending flag
(+) @ref HAL_PSSI_ENABLE_IT : Enable the specified PSSI interrupt
(+) @ref HAL_PSSI_DISABLE_IT : Disable the specified PSSI interrupt
*** Callback registration ***
=============================================
Use Functions @ref HAL_PSSI_RegisterCallback() or @ref HAL_PSSI_RegisterAddrCallback()
to register an interrupt callback.
Function @ref HAL_PSSI_RegisterCallback() allows to register following callbacks:
(+) TxCpltCallback : callback for transmission end of transfer.
(+) RxCpltCallback : callback for reception end of transfer.
(+) ErrorCallback : callback for error detection.
(+) AbortCpltCallback : callback for abort completion process.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function @ref HAL_PSSI_UnRegisterCallback to reset a callback to the default
weak function.
@ref HAL_PSSI_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxCpltCallback : callback for transmission end of transfer.
(+) RxCpltCallback : callback for reception end of transfer.
(+) ErrorCallback : callback for error detection.
(+) AbortCpltCallback : callback for abort completion process.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
By default, after the @ref HAL_PSSI_Init() and when the state is @ref HAL_PSSI_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples @ref HAL_PSSI_TxCpltCallback(), @ref HAL_PSSI_RxCpltCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the @ref HAL_PSSI_Init()/ @ref HAL_PSSI_DeInit() only when
these callbacks are null (not registered beforehand).
If MspInit or MspDeInit are not null, the @ref HAL_PSSI_Init()/ @ref HAL_PSSI_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
Callbacks can be registered/unregistered in @ref HAL_PSSI_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in @ref HAL_PSSI_STATE_READY or @ref HAL_PSSI_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
Then, the user first registers the MspInit/MspDeInit user callbacks
using @ref HAL_PSSI_RegisterCallback() before calling @ref HAL_PSSI_DeInit()
or @ref HAL_PSSI_Init() function.
[..]
(@) You can refer to the PSSI HAL driver header file for more useful macros
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"
/** @addtogroup STM32L4xx_HAL_Driver
* @{
*/
/** @defgroup PSSI PSSI
* @brief PSSI HAL module driver
* @{
*/
#ifdef HAL_PSSI_MODULE_ENABLED
#if defined(PSSI)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PSSI_Private_Define PSSI Private Define
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup PSSI_Private_Functions PSSI Private Functions
* @{
*/
/* Private functions to handle DMA transfer */
void PSSI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
void PSSI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
void PSSI_DMAError(DMA_HandleTypeDef *hdma);
void PSSI_DMAAbort(DMA_HandleTypeDef *hdma);
/* Private functions to handle IT transfer */
static void PSSI_Error(PSSI_HandleTypeDef *hpssi, uint32_t ErrorCode);
/* Private functions for PSSI transfer IRQ handler */
/* Private functions to handle flags during polling transfer */
static HAL_StatusTypeDef PSSI_WaitOnStatusUntilTimeout(PSSI_HandleTypeDef *hpssi, uint32_t Flag, FlagStatus Status,
uint32_t Timeout, uint32_t Tickstart);
/* Private functions to centralize the enable/disable of Interrupts */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PSSI_Exported_Functions PSSI Exported Functions
* @{
*/
/** @defgroup PSSI_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
deinitialize the PSSIx peripheral:
(+) User must implement HAL_PSSI_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_PSSI_Init() to configure the selected device with
the selected configuration:
(++) Data Width
(++) Control Signals
(++) Input Clock polarity
(++) Output Clock polarity
(+) Call the function HAL_PSSI_DeInit() to restore the default configuration
of the selected PSSIx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initializes the PSSI according to the specified parameters
* in the PSSI_InitTypeDef and initialize the associated handle.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Init(PSSI_HandleTypeDef *hpssi)
{
/* Check the PSSI handle allocation */
if (hpssi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_PSSI_ALL_INSTANCE(hpssi->Instance));
assert_param(IS_PSSI_CONTROL_SIGNAL(hpssi->Init.ControlSignal));
assert_param(IS_PSSI_BUSWIDTH(hpssi->Init.BusWidth));
assert_param(IS_PSSI_CLOCK_POLARITY(hpssi->Init.ClockPolarity));
assert_param(IS_PSSI_DE_POLARITY(hpssi->Init.DataEnablePolarity));
assert_param(IS_PSSI_RDY_POLARITY(hpssi->Init.ReadyPolarity));
if (hpssi->State == HAL_PSSI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hpssi->Lock = HAL_UNLOCKED;
/* Init the PSSI Callback settings */
hpssi->TxCpltCallback = HAL_PSSI_TxCpltCallback; /* Legacy weak TxCpltCallback */
hpssi->RxCpltCallback = HAL_PSSI_RxCpltCallback; /* Legacy weak RxCpltCallback */
hpssi->ErrorCallback = HAL_PSSI_ErrorCallback; /* Legacy weak ErrorCallback */
hpssi->AbortCpltCallback = HAL_PSSI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
if (hpssi->MspInitCallback == NULL)
{
hpssi->MspInitCallback = HAL_PSSI_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
hpssi->MspInitCallback(hpssi);
}
hpssi->State = HAL_PSSI_STATE_BUSY;
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/*---------------------------- PSSIx CR Configuration ----------------------*/
/* Configure PSSIx: Control Signal and Bus Width*/
MODIFY_REG(hpssi->Instance->CR, PSSI_CR_DERDYCFG | PSSI_CR_EDM | PSSI_CR_DEPOL | PSSI_CR_RDYPOL,
hpssi->Init.ControlSignal | hpssi->Init.DataEnablePolarity |
hpssi->Init.ReadyPolarity | hpssi->Init.BusWidth);
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
hpssi->State = HAL_PSSI_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitialize the PSSI peripheral.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_DeInit(PSSI_HandleTypeDef *hpssi)
{
/* Check the PSSI handle allocation */
if (hpssi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_PSSI_ALL_INSTANCE(hpssi->Instance));
hpssi->State = HAL_PSSI_STATE_BUSY;
/* Disable the PSSI Peripheral Clock */
HAL_PSSI_DISABLE(hpssi);
if (hpssi->MspDeInitCallback == NULL)
{
hpssi->MspDeInitCallback = HAL_PSSI_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
hpssi->MspDeInitCallback(hpssi);
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
hpssi->State = HAL_PSSI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hpssi);
return HAL_OK;
}
/**
* @brief Initialize the PSSI MSP.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_MspInit(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PSSI_MspInit can be implemented in the user file
*/
}
/**
* @brief De-Initialize the PSSI MSP.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_MspDeInit(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_PSSI_MspDeInit can be implemented in the user file
*/
}
/**
* @brief Register a User PSSI Callback
* To be used instead of the weak predefined callback
* @note The HAL_PSSI_RegisterCallback() may be called before HAL_PSSI_Init() in
* HAL_PSSI_STATE_RESET to register callbacks for HAL_PSSI_MSPINIT_CB_ID
* and HAL_PSSI_MSPDEINIT_CB_ID.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_PSSI_TX_COMPLETE_CB_ID Tx Transfer completed callback ID
* @arg @ref HAL_PSSI_RX_COMPLETE_CB_ID Rx Transfer completed callback ID
* @arg @ref HAL_PSSI_ERROR_CB_ID Error callback ID
* @arg @ref HAL_PSSI_ABORT_CB_ID Abort callback ID
* @arg @ref HAL_PSSI_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_PSSI_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_RegisterCallback(PSSI_HandleTypeDef *hpssi, HAL_PSSI_CallbackIDTypeDef CallbackID,
pPSSI_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (HAL_PSSI_STATE_READY == hpssi->State)
{
switch (CallbackID)
{
case HAL_PSSI_TX_COMPLETE_CB_ID :
hpssi->TxCpltCallback = pCallback;
break;
case HAL_PSSI_RX_COMPLETE_CB_ID :
hpssi->RxCpltCallback = pCallback;
break;
case HAL_PSSI_ERROR_CB_ID :
hpssi->ErrorCallback = pCallback;
break;
case HAL_PSSI_ABORT_CB_ID :
hpssi->AbortCpltCallback = pCallback;
break;
case HAL_PSSI_MSPINIT_CB_ID :
hpssi->MspInitCallback = pCallback;
break;
case HAL_PSSI_MSPDEINIT_CB_ID :
hpssi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_PSSI_STATE_RESET == hpssi->State)
{
switch (CallbackID)
{
case HAL_PSSI_MSPINIT_CB_ID :
hpssi->MspInitCallback = pCallback;
break;
case HAL_PSSI_MSPDEINIT_CB_ID :
hpssi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister an PSSI Callback
* PSSI callback is redirected to the weak predefined callback
* @note The HAL_PSSI_UnRegisterCallback() may be called before HAL_PSSI_Init() in
* HAL_PSSI_STATE_RESET to un-register callbacks for HAL_PSSI_MSPINIT_CB_ID
* and HAL_PSSI_MSPDEINIT_CB_ID.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_PSSI_TX_COMPLETE_CB_ID Tx Transfer completed callback ID
* @arg @ref HAL_PSSI_RX_COMPLETE_CB_ID Rx Transfer completed callback ID
* @arg @ref HAL_PSSI_ERROR_CB_ID Error callback ID
* @arg @ref HAL_PSSI_ABORT_CB_ID Abort callback ID
* @arg @ref HAL_PSSI_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_PSSI_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_UnRegisterCallback(PSSI_HandleTypeDef *hpssi, HAL_PSSI_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (HAL_PSSI_STATE_READY == hpssi->State)
{
switch (CallbackID)
{
case HAL_PSSI_TX_COMPLETE_CB_ID :
hpssi->TxCpltCallback = HAL_PSSI_TxCpltCallback; /* Legacy weak TxCpltCallback */
break;
case HAL_PSSI_RX_COMPLETE_CB_ID :
hpssi->RxCpltCallback = HAL_PSSI_RxCpltCallback; /* Legacy weak RxCpltCallback */
break;
case HAL_PSSI_ERROR_CB_ID :
hpssi->ErrorCallback = HAL_PSSI_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_PSSI_ABORT_CB_ID :
hpssi->AbortCpltCallback = HAL_PSSI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
break;
case HAL_PSSI_MSPINIT_CB_ID :
hpssi->MspInitCallback = HAL_PSSI_MspInit; /* Legacy weak MspInit */
break;
case HAL_PSSI_MSPDEINIT_CB_ID :
hpssi->MspDeInitCallback = HAL_PSSI_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_PSSI_STATE_RESET == hpssi->State)
{
switch (CallbackID)
{
case HAL_PSSI_MSPINIT_CB_ID :
hpssi->MspInitCallback = HAL_PSSI_MspInit; /* Legacy weak MspInit */
break;
case HAL_PSSI_MSPDEINIT_CB_ID :
hpssi->MspDeInitCallback = HAL_PSSI_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @}
*/
/** @defgroup PSSI_Exported_Functions_Group2 Input and Output operation functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the PSSI data
transfers.
(#) There are two modes of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using DMA.
These functions return the status of the transfer startup.
The end of the data processing will be indicated through the
dedicated the DMA IRQ .
(#) Blocking mode functions are :
(++) HAL_PSSI_Transmit()
(++) HAL_PSSI_Receive()
(#) No-Blocking mode functions with DMA are :
(++) HAL_PSSI_Transmit_DMA()
(++) HAL_PSSI_Receive_DMA()
(#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
(++) HAL_PSSI_TxCpltCallback()
(++) HAL_PSSI_RxCpltCallback()
(++) HAL_PSSI_ErrorCallback()
(++) HAL_PSSI_AbortCpltCallback()
@endverbatim
* @{
*/
/**
* @brief Transmits in master mode an amount of data in blocking mode.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent (in bytes)
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Transmit(PSSI_HandleTypeDef *hpssi, uint8_t *pData, uint32_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint32_t transfer_size = Size;
if (((hpssi->Init.DataWidth == HAL_PSSI_8BITS) && (hpssi->Init.BusWidth != HAL_PSSI_8LINES)) ||
((hpssi->Init.DataWidth == HAL_PSSI_16BITS) && ((Size % 2U) != 0U)) ||
((hpssi->Init.DataWidth == HAL_PSSI_32BITS) && ((Size % 4U) != 0U)))
{
hpssi->ErrorCode = HAL_PSSI_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if (hpssi->State == HAL_PSSI_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hpssi);
hpssi->State = HAL_PSSI_STATE_BUSY;
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/* Configure transfer parameters */
hpssi->Instance->CR |= PSSI_CR_OUTEN_OUTPUT |
((hpssi->Init.ClockPolarity == HAL_PSSI_RISING_EDGE) ? 0U : PSSI_CR_CKPOL);
/* DMA Disable */
hpssi->Instance->CR &= PSSI_CR_DMA_DISABLE;
/* Enable the selected PSSI peripheral */
HAL_PSSI_ENABLE(hpssi);
if (hpssi->Init.DataWidth == HAL_PSSI_8BITS)
{
uint8_t *pbuffer = pData;
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to transfer one byte flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT1B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Write data to DR */
*(__IO uint8_t *)(&hpssi->Instance->DR) = *(uint8_t *)pbuffer;
/* Increment Buffer pointer */
pbuffer++;
transfer_size--;
}
}
else if (hpssi->Init.DataWidth == HAL_PSSI_16BITS)
{
uint16_t *pbuffer = (uint16_t *)pData;
__IO uint16_t *dr = (__IO uint16_t *)(&hpssi->Instance->DR);
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to transfer four bytes flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT4B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Write data to DR */
*dr = *pbuffer;
/* Increment Buffer pointer */
pbuffer++;
transfer_size -= 2U;
}
}
else if (hpssi->Init.DataWidth == HAL_PSSI_32BITS)
{
uint32_t *pbuffer = (uint32_t *)pData;
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to transfer four bytes flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT4B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Write data to DR */
*(__IO uint32_t *)(&hpssi->Instance->DR) = *pbuffer;
/* Increment Buffer pointer */
pbuffer++;
transfer_size -= 4U;
}
}
else
{
hpssi->ErrorCode = HAL_PSSI_ERROR_NOT_SUPPORTED;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Check Errors Flags */
if (HAL_PSSI_GET_FLAG(hpssi, PSSI_FLAG_OVR_RIS) != 0U)
{
HAL_PSSI_CLEAR_FLAG(hpssi, PSSI_FLAG_OVR_RIS);
HAL_PSSI_DISABLE(hpssi);
hpssi->ErrorCode = HAL_PSSI_ERROR_UNDER_RUN;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receives an amount of data in blocking mode.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received (in bytes)
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Receive(PSSI_HandleTypeDef *hpssi, uint8_t *pData, uint32_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint32_t transfer_size = Size;
if (((hpssi->Init.DataWidth == HAL_PSSI_8BITS) && (hpssi->Init.BusWidth != HAL_PSSI_8LINES)) ||
((hpssi->Init.DataWidth == HAL_PSSI_16BITS) && ((Size % 2U) != 0U)) ||
((hpssi->Init.DataWidth == HAL_PSSI_32BITS) && ((Size % 4U) != 0U)))
{
hpssi->ErrorCode = HAL_PSSI_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if (hpssi->State == HAL_PSSI_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hpssi);
hpssi->State = HAL_PSSI_STATE_BUSY;
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/* Configure transfer parameters */
hpssi->Instance->CR |= PSSI_CR_OUTEN_INPUT |
((hpssi->Init.ClockPolarity == HAL_PSSI_FALLING_EDGE) ? 0U : PSSI_CR_CKPOL);
/* DMA Disable */
hpssi->Instance->CR &= PSSI_CR_DMA_DISABLE;
/* Enable the selected PSSI peripheral */
HAL_PSSI_ENABLE(hpssi);
if (hpssi->Init.DataWidth == HAL_PSSI_8BITS)
{
uint8_t *pbuffer = pData;
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to receive one byte flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT1B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Read data from DR */
*pbuffer = *(__IO uint8_t *)(&hpssi->Instance->DR);
pbuffer++;
transfer_size--;
}
}
else if (hpssi->Init.DataWidth == HAL_PSSI_16BITS)
{
uint16_t *pbuffer = (uint16_t *)pData;
__IO uint16_t *dr = (__IO uint16_t *)(&hpssi->Instance->DR);
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to receive four bytes flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT4B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Read data from DR */
*pbuffer = *dr;
pbuffer++;
transfer_size -= 2U;
}
}
else if (hpssi->Init.DataWidth == HAL_PSSI_32BITS)
{
uint32_t *pbuffer = (uint32_t *)pData;
while (transfer_size > 0U)
{
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until Fifo is ready to receive four bytes flag is set */
if (PSSI_WaitOnStatusUntilTimeout(hpssi, PSSI_FLAG_RTT4B, RESET, Timeout, tickstart) != HAL_OK)
{
hpssi->ErrorCode = HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Read data from DR */
*pbuffer = *(__IO uint32_t *)(&hpssi->Instance->DR);
pbuffer++;
transfer_size -= 4U;
}
}
else
{
hpssi->ErrorCode = HAL_PSSI_ERROR_NOT_SUPPORTED;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
/* Check Errors Flags */
if (HAL_PSSI_GET_FLAG(hpssi, PSSI_FLAG_OVR_RIS) != 0U)
{
HAL_PSSI_CLEAR_FLAG(hpssi, PSSI_FLAG_OVR_RIS);
hpssi->ErrorCode = HAL_PSSI_ERROR_OVER_RUN;
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent (in bytes)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Transmit_DMA(PSSI_HandleTypeDef *hpssi, uint32_t *pData, uint32_t Size)
{
HAL_StatusTypeDef dmaxferstatus;
if (hpssi->State == HAL_PSSI_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hpssi);
hpssi->State = HAL_PSSI_STATE_BUSY_TX;
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/* Prepare transfer parameters */
hpssi->pBuffPtr = pData;
hpssi->XferCount = Size;
if (hpssi->XferCount > PSSI_MAX_NBYTE_SIZE)
{
hpssi->XferSize = PSSI_MAX_NBYTE_SIZE;
}
else
{
hpssi->XferSize = hpssi->XferCount;
}
if (hpssi->XferSize > 0U)
{
if (hpssi->hdmatx != NULL)
{
/* Configure BusWidth */
if (hpssi->hdmatx->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
MODIFY_REG(hpssi->Instance->CR, PSSI_CR_DMAEN | PSSI_CR_OUTEN | PSSI_CR_CKPOL,
PSSI_CR_DMA_ENABLE | PSSI_CR_OUTEN_OUTPUT |
((hpssi->Init.ClockPolarity == HAL_PSSI_RISING_EDGE) ? 0U : PSSI_CR_CKPOL));
}
else
{
MODIFY_REG(hpssi->Instance->CR, PSSI_CR_DMAEN | PSSI_CR_OUTEN | PSSI_CR_CKPOL,
PSSI_CR_DMA_ENABLE | hpssi->Init.BusWidth | PSSI_CR_OUTEN_OUTPUT |
((hpssi->Init.ClockPolarity == HAL_PSSI_RISING_EDGE) ? 0U : PSSI_CR_CKPOL));
}
/* Set the PSSI DMA transfer complete callback */
hpssi->hdmatx->XferCpltCallback = PSSI_DMATransmitCplt;
/* Set the DMA error callback */
hpssi->hdmatx->XferErrorCallback = PSSI_DMAError;
/* Set the unused DMA callbacks to NULL */
hpssi->hdmatx->XferHalfCpltCallback = NULL;
hpssi->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA */
dmaxferstatus = HAL_DMA_Start_IT(hpssi->hdmatx, (uint32_t)pData, (uint32_t)&hpssi->Instance->DR,
hpssi->XferSize);
}
else
{
/* Update PSSI state */
hpssi->State = HAL_PSSI_STATE_READY;
/* Update PSSI error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Update XferCount value */
hpssi->XferCount -= hpssi->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Note : The PSSI interrupts must be enabled after unlocking current process
to avoid the risk of PSSI interrupt handle execution before current
process unlock */
/* Enable ERR interrupt */
HAL_PSSI_ENABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Enable DMA Request */
hpssi->Instance->CR |= PSSI_CR_DMA_ENABLE;
/* Enable the selected PSSI peripheral */
HAL_PSSI_ENABLE(hpssi);
}
else
{
/* Update PSSI state */
hpssi->State = HAL_PSSI_STATE_READY;
/* Update PSSI error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Note : The PSSI interrupts must be enabled after unlocking current process
to avoid the risk of PSSI interrupt handle execution before current
process unlock */
/* Enable ERRinterrupt */
/* possible to enable all of these */
HAL_PSSI_ENABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received (in bytes)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Receive_DMA(PSSI_HandleTypeDef *hpssi, uint32_t *pData, uint32_t Size)
{
HAL_StatusTypeDef dmaxferstatus;
if (hpssi->State == HAL_PSSI_STATE_READY)
{
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/* Process Locked */
__HAL_LOCK(hpssi);
hpssi->State = HAL_PSSI_STATE_BUSY_RX;
hpssi->ErrorCode = HAL_PSSI_ERROR_NONE;
/* Prepare transfer parameters */
hpssi->pBuffPtr = pData;
hpssi->XferCount = Size;
if (hpssi->XferCount > PSSI_MAX_NBYTE_SIZE)
{
hpssi->XferSize = PSSI_MAX_NBYTE_SIZE;
}
else
{
hpssi->XferSize = hpssi->XferCount;
}
if (hpssi->XferSize > 0U)
{
if (hpssi->hdmarx != NULL)
{
/* Configure BusWidth */
if (hpssi->hdmatx->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
MODIFY_REG(hpssi->Instance->CR, PSSI_CR_DMAEN | PSSI_CR_OUTEN | PSSI_CR_CKPOL, PSSI_CR_DMA_ENABLE |
((hpssi->Init.ClockPolarity == HAL_PSSI_RISING_EDGE) ? PSSI_CR_CKPOL : 0U));
}
else
{
MODIFY_REG(hpssi->Instance->CR, PSSI_CR_DMAEN | PSSI_CR_OUTEN | PSSI_CR_CKPOL,
PSSI_CR_DMA_ENABLE | hpssi->Init.BusWidth |
((hpssi->Init.ClockPolarity == HAL_PSSI_RISING_EDGE) ? PSSI_CR_CKPOL : 0U));
}
/* Set the PSSI DMA transfer complete callback */
hpssi->hdmarx->XferCpltCallback = PSSI_DMAReceiveCplt;
/* Set the DMA error callback */
hpssi->hdmarx->XferErrorCallback = PSSI_DMAError;
/* Set the unused DMA callbacks to NULL */
hpssi->hdmarx->XferHalfCpltCallback = NULL;
hpssi->hdmarx->XferAbortCallback = NULL;
/* Enable the DMA */
dmaxferstatus = HAL_DMA_Start_IT(hpssi->hdmarx, (uint32_t)&hpssi->Instance->DR, (uint32_t)pData,
hpssi->XferSize);
}
else
{
/* Update PSSI state */
hpssi->State = HAL_PSSI_STATE_READY;
/* Update PSSI error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
if (dmaxferstatus == HAL_OK)
{
/* Update XferCount value */
hpssi->XferCount -= hpssi->XferSize;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Note : The PSSI interrupts must be enabled after unlocking current process
to avoid the risk of PSSI interrupt handle execution before current
process unlock */
/* Enable ERR interrupt */
HAL_PSSI_ENABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Enable DMA Request */
hpssi->Instance->CR |= PSSI_CR_DMA_ENABLE;
/* Enable the selected PSSI peripheral */
HAL_PSSI_ENABLE(hpssi);
}
else
{
/* Update PSSI state */
hpssi->State = HAL_PSSI_STATE_READY;
/* Update PSSI error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_DMA;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Enable ERR,interrupt */
HAL_PSSI_ENABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
}
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Abort a DMA process communication with Interrupt.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PSSI_Abort_DMA(PSSI_HandleTypeDef *hpssi)
{
/* Process Locked */
__HAL_LOCK(hpssi);
/* Disable Interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Set State at HAL_PSSI_STATE_ABORT */
hpssi->State = HAL_PSSI_STATE_ABORT;
/* Abort DMA TX transfer if any */
if ((hpssi->Instance->CR & PSSI_CR_DMAEN) == PSSI_CR_DMAEN)
{
if (hpssi->State == HAL_PSSI_STATE_BUSY_TX)
{
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmatx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmatx->XferAbortCallback = PSSI_DMAAbort;
/* Abort DMA TX */
if (HAL_DMA_Abort_IT(hpssi->hdmatx) != HAL_OK)
{
/* Call Directly XferAbortCallback function in case of error */
hpssi->hdmatx->XferAbortCallback(hpssi->hdmatx);
}
}
}
/* Abort DMA RX transfer if any */
else if (hpssi->State == HAL_PSSI_STATE_BUSY_RX)
{
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmarx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmarx->XferAbortCallback = PSSI_DMAAbort;
/* Abort DMA RX */
if (HAL_DMA_Abort_IT(hpssi->hdmarx) != HAL_OK)
{
/* Call Directly hpssi->hdma->XferAbortCallback function in case of error */
hpssi->hdmarx->XferAbortCallback(hpssi->hdmarx);
}
}
}
else
{
/* Call the error callback */
hpssi->ErrorCallback(hpssi);
}
}
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Note : The PSSI interrupts must be enabled after unlocking current process
to avoid the risk of PSSI interrupt handle execution before current
process unlock */
HAL_PSSI_ENABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup PSSI_IRQ_Handler_and_Callbacks IRQ Handler and Callbacks
* @{
*/
/**
* @brief This function handles PSSI event interrupt request.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
void HAL_PSSI_IRQHandler(PSSI_HandleTypeDef *hpssi)
{
/* Overrun/ Underrun Errors */
if (HAL_PSSI_GET_FLAG(hpssi, PSSI_FLAG_OVR_MIS) != 0U)
{
/* Reset handle parameters */
hpssi->XferCount = 0U;
/* Disable all interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Abort DMA TX transfer if any */
if ((hpssi->Instance->CR & PSSI_CR_DMAEN) == PSSI_CR_DMAEN)
{
if (hpssi->State == HAL_PSSI_STATE_BUSY_TX)
{
/* Set new error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_UNDER_RUN;
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmatx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmatx->XferAbortCallback = PSSI_DMAAbort;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Abort DMA TX */
if (HAL_DMA_Abort_IT(hpssi->hdmatx) != HAL_OK)
{
/* Call Directly XferAbortCallback function in case of error */
hpssi->hdmatx->XferAbortCallback(hpssi->hdmatx);
}
}
}
/* Abort DMA RX transfer if any */
else if (hpssi->State == HAL_PSSI_STATE_BUSY_RX)
{
/* Set new error code */
hpssi->ErrorCode |= HAL_PSSI_ERROR_OVER_RUN;
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmarx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmarx->XferAbortCallback = PSSI_DMAAbort;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Abort DMA RX */
if (HAL_DMA_Abort_IT(hpssi->hdmarx) != HAL_OK)
{
/* Call Directly hpssi->hdma->XferAbortCallback function in case of error */
hpssi->hdmarx->XferAbortCallback(hpssi->hdmarx);
}
}
}
else
{
/* Call the corresponding callback to inform upper layer of the error */
hpssi->ErrorCallback(hpssi);
}
}
/* If state is an abort treatment on going, don't change state */
if (hpssi->State == HAL_PSSI_STATE_ABORT)
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->AbortCpltCallback(hpssi);
}
else
{
/* Set HAL_PSSI_STATE_READY */
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->ErrorCallback(hpssi);
}
}
}
/**
* @brief Tx Transfer complete callback.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_TxCpltCallback(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PSSI_TxCpltCallback can be implemented in the user file
*/
}
/**
* @brief Rx Transfer complete callback.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_RxCpltCallback(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PSSI_RxCpltCallback can be implemented in the user file
*/
}
/**
* @brief PSSI error callback.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_ErrorCallback(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PSSI_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief PSSI abort callback.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval None
*/
__weak void HAL_PSSI_AbortCpltCallback(PSSI_HandleTypeDef *hpssi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpssi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PSSI_AbortCpltCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup PSSI_Exported_Functions_Group3 Peripheral State and Error functions
* @brief Peripheral State, Mode and Error functions
*
@verbatim
===============================================================================
##### Peripheral State, Mode and Error functions #####
===============================================================================
[..]
This subsection permit to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the PSSI handle state.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval HAL state
*/
HAL_PSSI_StateTypeDef HAL_PSSI_GetState(PSSI_HandleTypeDef *hpssi)
{
/* Return PSSI handle state */
return hpssi->State;
}
/**
* @brief Return the PSSI error code.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @retval PSSI Error Code
*/
uint32_t HAL_PSSI_GetError(PSSI_HandleTypeDef *hpssi)
{
return hpssi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup PSSI_Private_Functions
* @{
*/
/**
* @brief PSSI Errors process.
* @param hpssi PSSI handle.
* @param ErrorCode Error code to handle.
* @retval None
*/
static void PSSI_Error(PSSI_HandleTypeDef *hpssi, uint32_t ErrorCode)
{
/* Reset handle parameters */
hpssi->XferCount = 0U;
/* Set new error code */
hpssi->ErrorCode |= ErrorCode;
/* Disable all interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Abort DMA TX transfer if any */
if ((hpssi->Instance->CR & PSSI_CR_DMAEN) == PSSI_CR_DMAEN)
{
if (hpssi->State == HAL_PSSI_STATE_BUSY_TX)
{
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmatx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmatx->XferAbortCallback = PSSI_DMAAbort;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Abort DMA TX */
if (HAL_DMA_Abort_IT(hpssi->hdmatx) != HAL_OK)
{
/* Call Directly XferAbortCallback function in case of error */
hpssi->hdmatx->XferAbortCallback(hpssi->hdmatx);
}
}
}
/* Abort DMA RX transfer if any */
else if (hpssi->State == HAL_PSSI_STATE_BUSY_RX)
{
hpssi->Instance->CR &= ~PSSI_CR_DMAEN;
if (hpssi->hdmarx != NULL)
{
/* Set the PSSI DMA Abort callback :
will lead to call HAL_PSSI_ErrorCallback() at end of DMA abort procedure */
hpssi->hdmarx->XferAbortCallback = PSSI_DMAAbort;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Abort DMA RX */
if (HAL_DMA_Abort_IT(hpssi->hdmarx) != HAL_OK)
{
/* Call Directly hpssi->hdma->XferAbortCallback function in case of error */
hpssi->hdmarx->XferAbortCallback(hpssi->hdmarx);
}
}
}
else
{
/*Nothing to do*/
}
}
/* If state is an abort treatment on going, don't change state */
if (hpssi->State == HAL_PSSI_STATE_ABORT)
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->AbortCpltCallback(hpssi);
}
else
{
/* Set HAL_PSSI_STATE_READY */
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->ErrorCallback(hpssi);
}
}
/**
* @brief DMA PSSI slave transmit process complete callback.
* @param hdma DMA handle
* @retval None
*/
void PSSI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
PSSI_HandleTypeDef *hpssi = (PSSI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tmperror;
/* Disable Interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Store current volatile hpssi->ErrorCode, misra rule */
tmperror = hpssi->ErrorCode;
/* Call the corresponding callback to inform upper layer of End of Transfer */
if ((hpssi->State == HAL_PSSI_STATE_ABORT) || (tmperror != HAL_PSSI_ERROR_NONE))
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
PSSI_Error(hpssi, hpssi->ErrorCode);
}
/* hpssi->State == HAL_PSSI_STATE_BUSY_TX */
else
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->TxCpltCallback(hpssi);
}
}
/**
* @brief DMA PSSI master receive process complete callback.
* @param hdma DMA handle
* @retval None
*/
void PSSI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
PSSI_HandleTypeDef *hpssi = (PSSI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tmperror;
/* Disable Interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Store current volatile hpssi->ErrorCode, misra rule */
tmperror = hpssi->ErrorCode;
/* Call the corresponding callback to inform upper layer of End of Transfer */
if ((hpssi->State == HAL_PSSI_STATE_ABORT) || (tmperror != HAL_PSSI_ERROR_NONE))
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
PSSI_Error(hpssi, hpssi->ErrorCode);
}
/* hpssi->State == HAL_PSSI_STATE_BUSY_RX */
else
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->RxCpltCallback(hpssi);
}
}
/**
* @brief DMA PSSI communication abort callback
* (To be called at end of DMA Abort procedure).
* @param hdma DMA handle.
* @retval None
*/
void PSSI_DMAAbort(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
PSSI_HandleTypeDef *hpssi = (PSSI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Reset AbortCpltCallback */
hpssi->hdmatx->XferAbortCallback = NULL;
hpssi->hdmarx->XferAbortCallback = NULL;
/* Check if come from abort from user */
if (hpssi->State == HAL_PSSI_STATE_ABORT)
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->AbortCpltCallback(hpssi);
}
else
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->ErrorCallback(hpssi);
}
}
/**
* @brief This function handles PSSI Communication Timeout.
* @param hpssi Pointer to a PSSI_HandleTypeDef structure that contains
* the configuration information for the specified PSSI.
* @param Flag Specifies the PSSI flag to check.
* @param Status The new Flag status (SET or RESET).
* @param Timeout Timeout duration
* @param Tickstart Tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef PSSI_WaitOnStatusUntilTimeout(PSSI_HandleTypeDef *hpssi, uint32_t Flag, FlagStatus Status,
uint32_t Timeout, uint32_t Tickstart)
{
while ((HAL_PSSI_GET_STATUS(hpssi, Flag) & Flag) == (uint32_t)Status)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
{
hpssi->ErrorCode |= HAL_PSSI_ERROR_TIMEOUT;
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
return HAL_ERROR;
}
}
}
return HAL_OK;
}
void PSSI_DMAError(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
PSSI_HandleTypeDef *hpssi = (PSSI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tmperror;
/* Disable the selected PSSI peripheral */
HAL_PSSI_DISABLE(hpssi);
/* Disable Interrupts */
HAL_PSSI_DISABLE_IT(hpssi, PSSI_FLAG_OVR_RIS);
/* Store current volatile hpssi->ErrorCode, misra rule */
tmperror = hpssi->ErrorCode;
/* Call the corresponding callback to inform upper layer of End of Transfer */
if ((hpssi->State == HAL_PSSI_STATE_ABORT) || (tmperror != HAL_PSSI_ERROR_NONE))
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
PSSI_Error(hpssi, hpssi->ErrorCode);
}
else
{
hpssi->State = HAL_PSSI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hpssi);
/* Call the corresponding callback to inform upper layer of End of Transfer */
hpssi->ErrorCallback(hpssi);
}
}
/**
* @}
*/
#endif /* PSSI */
#endif /* HAL_PSSI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/