MW22-02A/OS2/uC-LIB/lib_mem.h

1337 lines
78 KiB
C
Raw Normal View History

2025-05-21 01:55:40 +00:00
/*
*********************************************************************************************************
* uC/LIB
* CUSTOM LIBRARY MODULES
*
* (c) Copyright 2004-2012; Micrium, Inc.; Weston, FL
*
* All rights reserved. Protected by international copyright laws.
*
* uC/LIB is provided in source form to registered licensees ONLY. It is
* illegal to distribute this source code to any third party unless you receive
* written permission by an authorized Micrium representative. Knowledge of
* the source code may NOT be used to develop a similar product.
*
* Please help us continue to provide the Embedded community with the finest
* software available. Your honesty is greatly appreciated.
*
* You can contact us at www.micrium.com.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
*
* STANDARD MEMORY OPERATIONS
*
* Filename : lib_mem.h
* Version : V1.37.01
* Programmer(s) : ITJ
* FBJ
*********************************************************************************************************
* Note(s) : (1) NO compiler-supplied standard library functions are used in library or product software.
*
* (a) ALL standard library functions are implemented in the custom library modules :
*
* (1) \<Custom Library Directory>\lib_*.*
*
* (2) \<Custom Library Directory>\Ports\<cpu>\<compiler>\lib*_a.*
*
* where
* <Custom Library Directory> directory path for custom library software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (b) Product-specific library functions are implemented in individual products.
*
* (2) Assumes the following versions (or more recent) of software modules are included in
* the project build :
*
* (a) uC/CPU V1.27
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MODULE
*
* Note(s) : (1) This memory library header file is protected from multiple pre-processor inclusion through
* use of the memory library module present pre-processor macro definition.
*********************************************************************************************************
*/
#ifndef LIB_MEM_MODULE_PRESENT /* See Note #1. */
#define LIB_MEM_MODULE_PRESENT
/*$PAGE*/
/*
*********************************************************************************************************
* INCLUDE FILES
*
* Note(s) : (1) The custom library software files are located in the following directories :
*
* (a) \<Your Product Application>\lib_cfg.h
*
* (b) \<Custom Library Directory>\lib_*.*
*
* where
* <Your Product Application> directory path for Your Product's Application
* <Custom Library Directory> directory path for custom library software
*
* (2) CPU-configuration software files are located in the following directories :
*
* (a) \<CPU-Compiler Directory>\cpu_*.*
* (b) \<CPU-Compiler Directory>\<cpu>\<compiler>\cpu*.*
*
* where
* <CPU-Compiler Directory> directory path for common CPU-compiler software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (3) Compiler MUST be configured to include as additional include path directories :
*
* (a) '\<Your Product Application>\' directory See Note #1a
*
* (b) '\<Custom Library Directory>\' directory See Note #1b
*
* (c) (1) '\<CPU-Compiler Directory>\' directory See Note #2a
* (2) '\<CPU-Compiler Directory>\<cpu>\<compiler>\' directory See Note #2b
*
* (4) NO compiler-supplied standard library functions SHOULD be used.
*********************************************************************************************************
*/
#include <cpu.h>
#include <cpu_core.h>
#include <lib_def.h>
#include <lib_cfg.h>
/*
*********************************************************************************************************
* EXTERNS
*********************************************************************************************************
*/
#ifdef LIB_MEM_MODULE
#define LIB_MEM_EXT
#else
#define LIB_MEM_EXT extern
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* DEFAULT CONFIGURATION
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY LIBRARY ARGUMENT CHECK CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_ARG_CHK_EXT_EN to enable/disable the memory library suite external
* argument check feature :
*
* (a) When ENABLED, arguments received from any port interface provided by the developer
* or application are checked/validated.
*
* (b) When DISABLED, NO arguments received from any port interface provided by the developer
* or application are checked/validated.
*********************************************************************************************************
*/
/* Configure external argument check feature (see Note #1) : */
#ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
#define LIB_MEM_CFG_ARG_CHK_EXT_EN DEF_DISABLED
/* DEF_DISABLED Argument check DISABLED */
/* DEF_ENABLED Argument check ENABLED */
#endif
/*
*********************************************************************************************************
* MEMORY LIBRARY ASSEMBLY OPTIMIZATION CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_OPTIMIZE_ASM_EN to enable/disable assembly-optimized memory functions.
*********************************************************************************************************
*/
/* Configure assembly-optimized function(s) [see Note #1] : */
#ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
#define LIB_MEM_CFG_OPTIMIZE_ASM_EN DEF_DISABLED
/* DEF_DISABLED Assembly-optimized function(s) DISABLED */
/* DEF_ENABLED Assembly-optimized function(s) ENABLED */
#endif
/*
*********************************************************************************************************
* MEMORY ALLOCATION CONFIGURATION
*
* Note(s) : (1) Configure LIB_MEM_CFG_ALLOC_EN to enable/disable memory allocation functions.
*********************************************************************************************************
*/
/* Configure memory allocation feature (see Note #1) : */
#ifndef LIB_MEM_CFG_ALLOC_EN
#define LIB_MEM_CFG_ALLOC_EN DEF_DISABLED
/* DEF_DISABLED Memory allocation DISABLED */
/* DEF_ENABLED Memory allocation ENABLED */
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* DEFINES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY LIBRARY TYPE DEFINES
*
* Note(s) : (1) LIB_MEM_TYPE_&&& #define values specifically chosen as ASCII representations of the memory
* library types. Memory displays of memory library objects will display the library TYPEs
* with their chosen ASCII names.
*********************************************************************************************************
*/
#define LIB_MEM_TYPE_NONE CPU_TYPE_CREATE('N', 'O', 'N', 'E')
#define LIB_MEM_TYPE_HEAP CPU_TYPE_CREATE('H', 'E', 'A', 'P')
#define LIB_MEM_TYPE_POOL CPU_TYPE_CREATE('P', 'O', 'O', 'L')
/*$PAGE*/
/*
*********************************************************************************************************
* DATA TYPES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* LIB MEM TYPE
*
* Note(s) : (1) 'LIB_MEM_TYPE' declared as 'CPU_INT32U' & all 'LIB_MEM_TYPE's #define'd with large, non-trivial
* values to trap & discard invalid/corrupted library memory objects based on 'LIB_MEM_TYPE'.
*********************************************************************************************************
*/
typedef CPU_INT32U LIB_MEM_TYPE;
/*
*********************************************************************************************************
* MEMORY POOL BLOCK QUANTITY DATA TYPE
*********************************************************************************************************
*/
typedef CPU_SIZE_T MEM_POOL_BLK_QTY;
/*
*********************************************************************************************************
* MEMORY POOL TABLE IX TYPE
*********************************************************************************************************
*/
typedef MEM_POOL_BLK_QTY MEM_POOL_IX;
/*$PAGE*/
/*
*********************************************************************************************************
* MEMORY POOL DATA TYPES
*
* MEMORY SEGMENT
* ----------------
* MEMORY POOL'S | | <----
* POINTERS TO | MEMORY | |
* MEM_POOL MEMORY BLOCKS | BLOCKS | |
* |----------------| |---------| | -------- | |
* | O------------------> | O--------------------> | | | |
* |----------------| |---------| | | | | |
* | Pool Addr Ptrs | | O------------- | -------- | |
* | Pool Size | |---------| | | | |
* |----------------| | | | | -------- | |
* | Blk Size | | | --------> | | | |
* | Blk Nbr | | | | | | | |
* | Blk Ix | | . | | -------- | |
* |----------------| | . | | | |
* |----------------| | . | | . | |
* | O----------------- | | | . | |
* |----------------| | | | | . | |
* | O------------ | | | | | |
* |----------------| | | |---------| | -------- | |
* | Seg Size Tot | | | | O--------------------> | | | |
* | Seg Size Rem | | | |---------| | | | | |
* |----------------| | | | | | -------- | |
* | Seg List Ptrs | | | |---------| | | |
* |----------------| | | | ------------ | |
* | | | | <--------
* | | | | | |
* | | | | | |
* | | | | | |
* | | | | | |
* | | | | | |
* | | ---------------- | |
* | | | |
* | -------------------------------------------------- |
* | |
* -----------------------------------------------------------
*
*********************************************************************************************************
*/
typedef struct mem_pool MEM_POOL;
/* --------------------- MEM POOL --------------------- */
struct mem_pool {
LIB_MEM_TYPE Type; /* Pool type : LIB_TYPE_POOL or LIB_TYPE_HEAP. */
MEM_POOL *SegHeadPtr; /* Ptr to head mem seg. */
MEM_POOL *SegPrevPtr; /* Ptr to PREV mem seg. */
MEM_POOL *SegNextPtr; /* Ptr to NEXT mem seg. */
MEM_POOL *PoolPrevPtr; /* Ptr to PREV mem pool. */
MEM_POOL *PoolNextPtr; /* Ptr to NEXT mem pool. */
void *PoolAddrStart; /* Ptr to start of mem seg for mem pool blks. */
void *PoolAddrEnd; /* Ptr to end of mem seg for mem pool blks. */
void **PoolPtrs; /* Ptr to mem pool's array of blk ptrs. */
MEM_POOL_IX BlkIx; /* Ix into mem pool's array of blk ptrs. */
CPU_SIZE_T PoolSize; /* Size of mem pool (in octets). */
MEM_POOL_BLK_QTY BlkNbr; /* Nbr of mem pool blks. */
CPU_SIZE_T BlkSize; /* Size of mem pool blks (in octets). */
CPU_SIZE_T BlkAlign; /* Align of mem pool blks (in octets). */
/* --------------------- MEM SEG ---------------------- */
void *SegAddr; /* Ptr to mem seg's base/start addr. */
void *SegAddrNextAvail; /* Ptr to mem seg's next avail addr. */
CPU_SIZE_T SegSizeTot; /* Tot size of mem seg (in octets). */
CPU_SIZE_T SegSizeRem; /* Rem size of mem seg (in octets). */
};
/*$PAGE*/
/*
*********************************************************************************************************
* GLOBAL VARIABLES
*********************************************************************************************************
*/
/*$PAGE*/
/*
*********************************************************************************************************
* MACRO'S
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY DATA VALUE MACRO'S
*
* Note(s) : (1) (a) Some variables & variable buffers to pass & receive data values MUST start on appropriate
* CPU word-aligned addresses. This is required because most word-aligned processors are more
* efficient & may even REQUIRE that multi-octet words start on CPU word-aligned addresses.
*
* (1) For 16-bit word-aligned processors, this means that
*
* all 16- & 32-bit words MUST start on addresses that are multiples of 2 octets
*
* (2) For 32-bit word-aligned processors, this means that
*
* all 16-bit words MUST start on addresses that are multiples of 2 octets
* all 32-bit words MUST start on addresses that are multiples of 4 octets
*
* (b) However, some data values macro's appropriately access data values from any CPU addresses,
* word-aligned or not. Thus for processors that require data word alignment, data words can
* be accessed to/from any CPU address, word-aligned or not, without generating data-word-
* alignment exceptions/faults.
*********************************************************************************************************
*/
/*$PAGE*/
/*
*********************************************************************************************************
* ENDIAN WORD ORDER MACRO'S
*
* Description : Convert data values to & from big-, little, or host-endian CPU word order.
*
* Argument(s) : val Data value to convert (see Notes #1 & #2).
*
* Return(s) : Converted data value (see Notes #1 & #2).
*
* Caller(s) : Application.
*
* Note(s) : (1) Convert data values to the desired data-word order :
*
* MEM_VAL_BIG_TO_LITTLE_xx() Convert big- endian data values
* to little- endian data values
* MEM_VAL_LITTLE_TO_BIG_xx() Convert little- endian data values
* to big- endian data values
* MEM_VAL_xxx_TO_HOST_xx() Convert big-/little-endian data values
* to host- endian data values
* MEM_VAL_HOST_TO_xxx_xx() Convert host- endian data values
* to big-/little-endian data values
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) 'val' data value to convert & any variable to receive the returned conversion MUST
* start on appropriate CPU word-aligned addresses.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1a'.
*
* (3) MEM_VAL_COPY_xxx() macro's are more efficient than generic endian word order macro's &
* are also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'
* & 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (4) Generic endian word order macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (5) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#if ((CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_64) || \
(CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_32))
#define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) << (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (3u * DEF_OCTET_NBR_BITS)))))
#elif (CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_16)
#define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) << (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (1u * DEF_OCTET_NBR_BITS)))))
#else
#define MEM_VAL_BIG_TO_LITTLE_16(val) (val)
#define MEM_VAL_BIG_TO_LITTLE_32(val) (val)
#endif
#define MEM_VAL_LITTLE_TO_BIG_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
#define MEM_VAL_LITTLE_TO_BIG_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_BIG_TO_HOST_16(val) (val)
#define MEM_VAL_BIG_TO_HOST_32(val) (val)
#define MEM_VAL_LITTLE_TO_HOST_16(val) MEM_VAL_LITTLE_TO_BIG_16(val)
#define MEM_VAL_LITTLE_TO_HOST_32(val) MEM_VAL_LITTLE_TO_BIG_32(val)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_BIG_TO_HOST_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
#define MEM_VAL_BIG_TO_HOST_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
#define MEM_VAL_LITTLE_TO_HOST_16(val) (val)
#define MEM_VAL_LITTLE_TO_HOST_32(val) (val)
#else /* See Note #5. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
#define MEM_VAL_HOST_TO_BIG_16(val) MEM_VAL_BIG_TO_HOST_16(val)
#define MEM_VAL_HOST_TO_BIG_32(val) MEM_VAL_BIG_TO_HOST_32(val)
#define MEM_VAL_HOST_TO_LITTLE_16(val) MEM_VAL_LITTLE_TO_HOST_16(val)
#define MEM_VAL_HOST_TO_LITTLE_32(val) MEM_VAL_LITTLE_TO_HOST_32(val)
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_GET_xxx()
*
* Description : Decode data values from any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address of data value to decode (see Notes #2 & #3a).
*
* Return(s) : Decoded data value from CPU memory address (see Notes #1 & #3b).
*
* Caller(s) : Application.
*
* Note(s) : (1) Decode data values based on the values' data-word order in CPU memory :
*
* MEM_VAL_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_GET_xxx() macro's decode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be decoded from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, any variable to receive the returned data value MUST start on an appropriate CPU
* word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
*
* (5) MEM_VAL_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#define MEM_VAL_GET_INT08U_BIG(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
#define MEM_VAL_GET_INT16U_BIG(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (0u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT32U_BIG(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (3u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (2u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (0u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT08U_LITTLE(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
#define MEM_VAL_GET_INT16U_LITTLE(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS)))))
#define MEM_VAL_GET_INT32U_LITTLE(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2u * DEF_OCTET_NBR_BITS))) + \
((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (3u * DEF_OCTET_NBR_BITS)))))
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_BIG(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_BIG(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_BIG(addr)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_LITTLE(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_LITTLE(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_LITTLE(addr)
#else /* See Note #6. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_SET_xxx()
*
* Description : Encode data values to any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address to encode data value (see Notes #2 & #3a).
*
* val Data value to encode (see Notes #1 & #3b).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Encode data values into CPU memory based on the values' data-word order :
*
* MEM_VAL_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_SET_xxx() macro's encode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be encoded to any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, 'val' data value to encode MUST start on an appropriate CPU word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (5) MEM_VAL_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#define MEM_VAL_SET_INT08U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT16U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT32U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT08U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT16U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); } while (0)
#define MEM_VAL_SET_INT32U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); } while (0)
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_BIG(addr, val)
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_BIG(addr, val)
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_BIG(addr, val)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_LITTLE(addr, val)
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_LITTLE(addr, val)
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_LITTLE(addr, val)
#else /* See Note #6. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_GET_xxx()
*
* Description : Copy & decode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/decode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/decode data values based on the values' data-word order :
*
* MEM_VAL_COPY_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_GET_xxx() macro's copy/decode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* decoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_GET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
* MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-
* static (i.e. volatile) variables, registers, hardware, etc.; without the caller of the
* macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (7) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src)
#else /* See Note #7. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_GET_INTU_xxx()
*
* Description : Copy & decode data values from any CPU memory address to any CPU memory address for
* any sized data values.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/decode
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy/decode.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/decode data values based on the values' data-word order :
*
* MEM_VAL_COPY_GET_INTU_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_INTU_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_INTU() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_GET_INTU_xxx() macro's copy/decode data values without regard to CPU word-
* aligned addresses. Thus for processors that require data word alignment, data words
* can be copied/decoded to/from any CPU address, word-aligned or not, without generating
* data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_COPY_GET_INTU_xxx()
* macro's & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
* MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_SET_INTU_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_GET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*
* (7) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
* name as an indentifier in an outer scope, and therefore hide that identifier".
*
* Therefore, to avoid possible redeclaration of commonly-used loop counter identifier names,
* 'i' & 'j', MEM_VAL_COPY_GET_INTU_xxx() loop counter identifier names are prefixed with a
* single underscore.
*
* (8) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
CPU_SIZE_T _j; \
\
\
_j = (val_size) - 1; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
_j--; \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
CPU_SIZE_T _j; \
\
\
_j = (val_size) - 1; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
_j--; \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
} \
} while (0)
#define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size)
#else /* See Note #8. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_SET_xxx()
*
* Description : Copy & encode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/encode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/encode data values based on the values' data-word order :
*
* MEM_VAL_COPY_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_SET_xxx() macro's copy/encode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* encoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_SET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
* MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller
* of the macro's providing some form of additional protection (e.g. mutual exclusion).
*********************************************************************************************************
*/
/* See Note #5. */
#define MEM_VAL_COPY_SET_INT08U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT08U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src)
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_SET_INTU_xxx()
*
* Description : Copy & encode data values from any CPU memory address to any CPU memory address for
* any sized data values.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/encode
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy/encode.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) Copy/encode data values based on the values' data-word order :
*
* MEM_VAL_COPY_SET_INTU_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_INTU_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_INTU() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_SET_INTU_xxx() macro's copy/encode data values without regard to CPU word-
* aligned addresses. Thus for processors that require data word alignment, data words
* can be copied/encoded to/from any CPU address, word-aligned or not, without generating
* data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_COPY_SET_INTU_xxx()
* macro's & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
* MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
* in both forms for semantics & consistency.
*
* See also 'MEM_VAL_COPY_GET_INTU_xxx() Note #5'.
*
* (6) MEM_VAL_COPY_SET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
* non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
* the macro's providing some form of additional protection (e.g. mutual exclusion).
*********************************************************************************************************
*/
/* See Note #5. */
#define MEM_VAL_COPY_SET_INTU_BIG(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size)
#define MEM_VAL_COPY_SET_INTU_LITTLE(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size)
#define MEM_VAL_COPY_SET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size)
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_xxx()
*
* Description : Copy data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy
* (see Notes #2 & #3).
*
* val_size Number of data value octets to copy.
*
* Return(s) : none.
*
* Caller(s) : Application.
*
* Note(s) : (1) MEM_VAL_COPY_xxx() macro's copy data values based on CPU's native data-word order.
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) (a) CPU memory addresses/pointers NOT checked for NULL.
*
* (b) CPU memory addresses/buffers NOT checked for overlapping.
*
* (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
* "copying ... between objects that overlap ... is undefined".
*
* (3) MEM_VAL_COPY_xxx() macro's copy data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be copied to/from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (4) MEM_VAL_COPY_xxx() macro's are more efficient than MEM_VAL_COPY() macro & SHOULD be
* used whenever possible.
*
* (5) MEM_VAL_COPY_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
* (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
* providing some form of additional protection (e.g. mutual exclusion).
*
* (6) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
* name as an indentifier in an outer scope, and therefore hide that identifier".
*
* Therefore, to avoid possible redeclaration of commonly-used loop counter identifier name,
* 'i', MEM_VAL_COPY() loop counter identifier name is prefixed with a single underscore.
*********************************************************************************************************
*/
#define MEM_VAL_COPY_08(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); } while (0)
#define MEM_VAL_COPY_16(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); } while (0)
#define MEM_VAL_COPY_32(addr_dest, addr_src) do { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); } while (0)
#define MEM_VAL_COPY(addr_dest, addr_src, val_size) do { \
CPU_SIZE_T _i; \
\
for (_i = 0; _i < (val_size); _i++) { \
(*(((CPU_INT08U *)(addr_dest)) +_i)) = (*(((CPU_INT08U *)(addr_src)) +_i)); \
} \
} while (0)
/*$PAGE*/
/*
*********************************************************************************************************
* FUNCTION PROTOTYPES
*********************************************************************************************************
*/
void Mem_Init ( void);
/* ---------------- MEM API FNCTS ---------------- */
void Mem_Clr ( void *pmem,
CPU_SIZE_T size);
void Mem_Set ( void *pmem,
CPU_INT08U data_val,
CPU_SIZE_T size);
void Mem_Copy ( void *pdest,
const void *psrc,
CPU_SIZE_T size);
void Mem_Move ( void *pdest,
const void *psrc,
CPU_SIZE_T size);
CPU_BOOLEAN Mem_Cmp (const void *p1_mem,
const void *p2_mem,
CPU_SIZE_T size);
#if (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED) /* ---------------- MEM POOL FNCTS ---------------- */
void *Mem_HeapAlloc ( CPU_SIZE_T size,
CPU_SIZE_T align,
CPU_SIZE_T *poctets_reqd,
LIB_ERR *perr);
CPU_SIZE_T Mem_HeapGetSizeRem ( CPU_SIZE_T align,
LIB_ERR *perr);
CPU_SIZE_T Mem_SegGetSizeRem ( MEM_POOL *pmem_pool,
CPU_SIZE_T align,
LIB_ERR *perr);
void Mem_PoolClr ( MEM_POOL *pmem_pool,
LIB_ERR *perr);
void Mem_PoolCreate ( MEM_POOL *pmem_pool,
void *pmem_base_addr,
CPU_SIZE_T mem_size,
MEM_POOL_BLK_QTY blk_nbr,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T *poctets_reqd,
LIB_ERR *perr);
MEM_POOL_BLK_QTY Mem_PoolBlkGetNbrAvail( MEM_POOL *pmem_pool,
LIB_ERR *perr);
void *Mem_PoolBlkGet ( MEM_POOL *pmem_pool,
CPU_SIZE_T size,
LIB_ERR *perr);
void *Mem_PoolBlkGetUsedAtIx( MEM_POOL *pmem_pool,
MEM_POOL_IX used_ix,
LIB_ERR *perr);
void Mem_PoolBlkFree ( MEM_POOL *pmem_pool,
void *pmem_blk,
LIB_ERR *perr);
MEM_POOL_IX Mem_PoolBlkIxGet ( MEM_POOL *pmem_pool,
void *pmem_blk,
LIB_ERR *perr);
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* CONFIGURATION ERRORS
*********************************************************************************************************
*/
#ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
#error "LIB_MEM_CFG_ARG_CHK_EXT_EN not #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_ARG_CHK_EXT_EN illegally #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#endif
#ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
#error "LIB_MEM_CFG_OPTIMIZE_ASM_EN not #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_OPTIMIZE_ASM_EN illegally #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#endif
#ifndef LIB_MEM_CFG_ALLOC_EN
#error "LIB_MEM_CFG_ALLOC_EN not #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif ((LIB_MEM_CFG_ALLOC_EN != DEF_DISABLED) && \
(LIB_MEM_CFG_ALLOC_EN != DEF_ENABLED ))
#error "LIB_MEM_CFG_ALLOC_EN illegally #define'd in 'lib_cfg.h'"
#error " [MUST be DEF_DISABLED] "
#error " [ || DEF_ENABLED ] "
#elif (LIB_MEM_CFG_ALLOC_EN == DEF_ENABLED)
#ifndef LIB_MEM_CFG_HEAP_SIZE
#error "LIB_MEM_CFG_HEAP_SIZE not #define'd in 'lib_cfg.h'"
#error " [MUST be > 0] "
#elif (DEF_CHK_VAL_MIN(LIB_MEM_CFG_HEAP_SIZE, 1) != DEF_OK)
#error "LIB_MEM_CFG_HEAP_SIZE illegally #define'd in 'lib_cfg.h'"
#error " [MUST be > 0] "
#endif
#ifdef LIB_MEM_CFG_HEAP_BASE_ADDR
#if (LIB_MEM_CFG_HEAP_BASE_ADDR == 0x0)
#error "LIB_MEM_CFG_HEAP_BASE_ADDR illegally #define'd in 'lib_cfg.h'"
#error " [MUST be > 0x0] "
#endif
#endif
#endif
/*
*********************************************************************************************************
* LIBRARY CONFIGURATION ERRORS
*********************************************************************************************************
*/
/* See 'lib_mem.h Note #2a'. */
#if (CPU_CORE_VERSION < 127u)
#error "CPU_CORE_VERSION [SHOULD be >= V1.27]"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MODULE END
*
* Note(s) : (1) See 'lib_mem.h MODULE'.
*********************************************************************************************************
*/
#endif /* End of lib mem module include. */