添加控制

This commit is contained in:
起床就犯困 2024-12-09 22:07:40 +08:00
parent fba3f20861
commit df08730752
2 changed files with 398 additions and 10 deletions

View File

@ -2,6 +2,8 @@
#include "bl_chargControl.h"
#include "parameter.h"
#include "comm_types.h"
#include "FM_GPIO.h"
static void stopChargWork(void);
static BOOL stopChargConditions(void);
@ -11,6 +13,378 @@ static BOOL constantVChargConditions(void);
static void mpptCharge(void);
static void constantVoltageCharge(void);
static void floatCharge(void);
static void mppt_constantVoltage(float InVoltage);
static void mppt_constantVoltageNoBatteryO(float OutVoltage);
static void mppt_constantVoltageO(float OutVoltage);
/**
* @brief
* @param InVoltage
* @retval
*
*/
void mppt_constantVoltage(float InVoltage)
{
static float kp = 0.005;
static float ki = 0.00001;
static float solarInCircuitVoltage;
static float error;
static float stepPwm;
solarInCircuitVoltage = getSolarInCircuitVoltage();
error = solarInCircuitVoltage - InVoltage;
// float error = InVoltage - g_otherParameter.Solar_In_Circuit_Voltage;
stepPwm = kp * error + ki * solarInCircuitVoltage;
setDutyRatio((getDutyRatio() + stepPwm));
set_pwmDutyRatio(getDutyRatio());
}
/**
* @brief ()
* @param
* @retval
*
*/
void mppt_constantVoltageNoBatteryO(float OutVoltage)
{
static float kp = 0.005;
static float ki = 0.00001;
static float outVolt;
static float error;
static float stepPwm;
outVolt = getOutputVoltage();
error = OutVoltage - outVolt;
stepPwm = kp * error + ki * outVolt;
setDutyRatio((getDutyRatio() + stepPwm));
set_pwmDutyRatio(getDutyRatio());
}
/**
* @brief
* @param
* @retval
*
*/
void mppt_constantVoltageO(float OutVoltage)
{
// static float lastVolt = 0;
// static float lastStepPwm = 0;
static float lastDutyRatio = 0;
static float kp = 0.005;
static float ki = 0.00001;
static float outVolt;
static float error;
static float StepPwm;
outVolt = getOutputVoltage();
error = OutVoltage - outVolt;
StepPwm = kp * error + ki * outVolt;
/* 当有电池时,输出电压的曲线是先上升后下降 */
if (lastDutyRatio >= getDutyRatio()) {
// if (lastVolt >= outVolt) {
setDutyRatio((getDutyRatio() - StepPwm));
// } else {
// g_controlParameter.dutyRatio -= StepPwm;
// }
} else {
// if (lastVolt >= outVolt) {
// g_controlParameter.dutyRatio -= StepPwm;
// } else {
// g_controlParameter.dutyRatio += StepPwm;
// }
setDutyRatio((getDutyRatio() + StepPwm));
}
// lastVolt = outVolt;
// lastStepPwm = StepPwm;
lastDutyRatio = getDutyRatio();
set_pwmDutyRatio(getDutyRatio());
}
/**
* @brief
* @param
* @retval
*
*/
void mppt_readJust(void)
{
/* 调节占空比 */
// static float_t step1 = 0.01;
// static float_t step2 = 0.003;
// static float_t tempV = 0.2;
// static float_t i = 0.005;
// static uint16_t flag = 0;
// static float_t lastSolarInCircuitVoltage = 0;
// static float_t lastPower = 0;
// flag++;
// if (flag < 500) {
// return;
// }
// flag = 0;
//
// float_t SolarInCircuitVoltage = get_PV1_VOLT_IN();
// float_t power = g_otherParameter.Output_Voltage * g_otherParameter.Charg_Current;
//
// float_t voltageDifference = SolarInCircuitVoltage - lastSolarInCircuitVoltage;
//
// /* 输出电压随占空比增加电压减小 */
// if (power <= lastPower) {
// if (lastSolarInCircuitVoltage <= SolarInCircuitVoltage) {
// if (voltageDifference > tempV) {
// g_controlParameter.dutyRatio += step2 + voltageDifference / i;
// } else {
// g_controlParameter.dutyRatio += step1 + voltageDifference / i;
// }
// } else {
// if (voltageDifference < -tempV) {
// g_controlParameter.dutyRatio -= step2 + voltageDifference / i;
// } else {
// g_controlParameter.dutyRatio -= step1 + voltageDifference / i;
// }
// }
// } else {
// if (lastSolarInCircuitVoltage <= SolarInCircuitVoltage) {
// if (voltageDifference > tempV) {
// g_controlParameter.dutyRatio -= step2 - voltageDifference / i;
// } else {
// g_controlParameter.dutyRatio -= step1 - voltageDifference / i;
// }
// } else {
// if (voltageDifference < -tempV) {
// g_controlParameter.dutyRatio += step2 - voltageDifference / i;
// } else {
// g_controlParameter.dutyRatio += step1 - voltageDifference / i;
// }
// }
// }
//
// lastPower = power;
// lastSolarInCircuitVoltage = SolarInCircuitVoltage;
//
// Set_duty_ratio(&g_controlParameter.dutyRatio);
/* 调节电压,变步长调节 */
// static float_t Power3 = 0; //上上次功率
// static float_t Power2 = 0; //上次功率
// static float_t Power1 = 0; //当前功率
// static float_t power23 = 0; //上次和上上次功率的绝对值
// static float_t power12 = 0; //当前功率和上次功率的绝对值
//// static float_t SolarInCircuitVoltage3 = 0; //上上次太阳能板电压
// static float_t SolarInCircuitVoltage2 = 0; //上次太阳能板电压
// static float_t SolarInCircuitVoltage1 = 0; //当前太阳能板电压
// static float_t SolarInCircuitVoltage12 = 0; //当前太阳能板电压和上次太阳能板电压的绝对值
// SolarInCircuitVoltage1 = get_PV1_VOLT_IN();
// Power1 = g_otherParameter.Output_Voltage * g_otherParameter.Charg_Current;
// static float_t power12Abs = 0;
// static float_t power23Abs = 0;
// static float_t SolarInCircuitVoltage12Abs = 0;
// static float_t dk = 0; //变步长因子
// static float_t stepV = 0;
// static float_t SolarInCircuitV = 18; //控制太阳能板的输出电压稳定在该值
//
// static float_t kp = 0.005;
// static float_t ki = 0.00001;
//
// /* 延时一段时间才判断 */
// static uint16_t flag = 0;
// flag++;
// if (flag < 1000) {
//// float_t pv1Volt = g_otherParameter.Solar_In_Circuit_Voltage;
// float_t pv1Volt = SolarInCircuitVoltage1;
// float_t error = pv1Volt - SolarInCircuitV;
// float_t stepPwm = kp * error + ki * pv1Volt;
//
// g_controlParameter.dutyRatio += stepPwm;
//
// /* 过温保护 */
// if (g_otherParameter.overTemperature == 0) {
//
// } else if (g_otherParameter.overTemperature == 1) {
// g_controlParameter.dutyRatio -= 0.1;
// } else if (g_otherParameter.overTemperature == 2) {
// g_controlParameter.dutyRatio -= 0.2;
// } else if (g_otherParameter.overTemperature == 3) {
// g_controlParameter.dutyRatio -= 0.3;
// }
//
// Set_duty_ratio(&g_controlParameter.dutyRatio);
//
// return;
// }
// flag = 0;
//
// power23 = Power2 - Power3;
// if (power23 < 0) {
// power23Abs = -power23;
// } else {
// power23Abs = power23;
// }
//
// power12 = Power1 - Power2;
// if (power12 < 0) {
// power12Abs = -power12;
// } else {
// power12Abs = power12;
// }
//
//// SolarInCircuitVoltage23 = SolarInCircuitVoltage2 - SolarInCircuitVoltage3;
//
// SolarInCircuitVoltage12 = SolarInCircuitVoltage1 - SolarInCircuitVoltage2;
//
// dk = power12Abs / power23Abs;
// stepV = dk * SolarInCircuitVoltage12Abs;
//
//// printf(" dk : %d/10000 \n", (int)(dk * 10000));
//
// if (power12 > 0) {
// if (SolarInCircuitVoltage12 > 0) {
// SolarInCircuitV = SolarInCircuitVoltage1 + stepV;
// } else {
// SolarInCircuitV = SolarInCircuitVoltage1 - stepV;
// }
// } else {
// if (SolarInCircuitVoltage12 > 0) {
// SolarInCircuitV = SolarInCircuitVoltage1 - stepV;
// } else {
// SolarInCircuitV = SolarInCircuitVoltage1 + stepV;
// }
// }
//
// printf(" SolarInCircuitV : %d/100 \n", (int)(SolarInCircuitV * 100));
//
// if (SolarInCircuitV > 21) {
// SolarInCircuitV = 21;
// }
// else if (SolarInCircuitV < 15) {
// SolarInCircuitV = 15;
// }
//
// printf(" SolarInCircuitV : %d/100 \n", (int)(SolarInCircuitV * 100));
//
// Power3 = Power2;
// Power2 = Power1;
//// SolarInCircuitVoltage3 = SolarInCircuitVoltage2;
// SolarInCircuitVoltage2 = SolarInCircuitVoltage1;
//
//// float_t pv1Volt = g_otherParameter.Solar_In_Circuit_Voltage;
// float_t pv1Volt = SolarInCircuitVoltage1;
// float_t error = pv1Volt - SolarInCircuitV;
// float_t stepPwm = kp * error + ki * pv1Volt;
//
// g_controlParameter.dutyRatio += stepPwm;
//
// /* 过温保护 */
// if (g_otherParameter.overTemperature == 0) {
//
// } else if (g_otherParameter.overTemperature == 1) {
// g_controlParameter.dutyRatio -= 0.1;
// } else if (g_otherParameter.overTemperature == 2) {
// g_controlParameter.dutyRatio -= 0.2;
// } else if (g_otherParameter.overTemperature == 3) {
// g_controlParameter.dutyRatio -= 0.3;
// }
//
// Set_duty_ratio(&g_controlParameter.dutyRatio);
//
// return;
/* 调节电压,两个电压步调节 */
static float Power = 0;
Power = getOutputVoltage() * getChargCurrent();
static float lPower = 0;
// static float lLPower = 0;
// static float lLLPower = 0;
static float SolarInCircuitV = 17; //控制太阳能板的输出电压稳定在该值,初始为17V
// static float kp = 0.005;
// static float ki = 0.00001;
static float stepV1 = 0.5;
static float stepV2 = 0.2;
static uint8_t flag1 = 0; //表明上次运算是加还是减
/* 延时一段时间才判断 */
static uint16_t flag = 0;
flag++;
if (flag < 150) {
// float pv1Volt = getSolarInCircuitVoltage();
// float error = pv1Volt - SolarInCircuitV;
// float stepPwm = kp * error + ki * pv1Volt;
// setDutyRatio((getDutyRatio() + stepPwm));
// set_pwmDutyRatio(getDutyRatio());
mppt_constantVoltage(SolarInCircuitV);
return;
}
flag = 0;
static float powerT = 0;
powerT = Power - lPower;
if (powerT < 0) {
powerT = -powerT;
}
// if ((lPower + 0.7 < Power) && (lLPower + 0.7 < Power) && (lLLPower + 0.7 < Power)) {
// if ((lPower + 0.7 < Power) && (lLPower + 0.7 < Power)) {
if ((lPower + 0.3f < Power)) {
if (powerT > 5) {
if (flag1) {
SolarInCircuitV += stepV1;
flag1 = 1;
} else {
SolarInCircuitV -= stepV1;
flag1 = 0;
}
} else {
if (flag1) {
SolarInCircuitV += stepV2;
flag1 = 1;
} else {
SolarInCircuitV -= stepV2;
flag1 = 0;
}
}
// } else if ((lPower - 0.7 > Power) && (lLPower - 0.7 > Power) && (lLLPower - 0.7 > Power)) {
// } else if ((lPower - 0.7 > Power) && (lLPower - 0.7 > Power)) {
} else if ((lPower - 0.3f > Power)) {
if (powerT > 5) {
if (flag1) {
SolarInCircuitV -= stepV1;
flag1 = 0;
} else {
SolarInCircuitV += stepV1;
flag1 = 1;
}
} else {
if (flag1) {
SolarInCircuitV -= stepV2;
flag1 = 0;
} else {
SolarInCircuitV += stepV2;
flag1 = 1;
}
}
}
if (SolarInCircuitV > 18.5f) {
SolarInCircuitV = 18.5f;
}
else if (SolarInCircuitV < 16.0f) {
SolarInCircuitV = 16.0f;
}
lPower = Power;
}
/**
* @brief
@ -20,7 +394,8 @@ static void floatCharge(void);
*/
void stopChargWork(void)
{
EN_PWMOUT_Diseable();
pwm_Stop();
}
/**
@ -32,7 +407,10 @@ void stopChargWork(void)
*/
BOOL stopChargConditions(void)
{
if (getSolarInCircuitVoltage() < g_cfgParameter.stopSolarOpenCircuitV
&& getChargCurrent() < 0.1f) {
return TRUE;
}
return FALSE;
}
@ -46,6 +424,11 @@ BOOL stopChargConditions(void)
*/
BOOL floatChargConditions(void)
{
if (g_cfgParameter.constantVoltageChargeV < getBatteryVoltage()
&& g_cfgParameter.floatI > getChargCurrent()) {
return TRUE;
}
return FALSE;
}
@ -121,7 +504,10 @@ void getCVData(void)
*/
void judgeYNBattery(void)
{
if (getBatteryVoltage() > 16 || getBatteryVoltage() < 10) {
setBatteryState(FALSE);
return;
}
}
/**
@ -132,7 +518,7 @@ void judgeYNBattery(void)
*/
void noBatteryChargControl(void)
{
mppt_constantVoltageNoBatteryO(g_cfgParameter.FloatV);
}
/**
@ -143,7 +529,7 @@ void noBatteryChargControl(void)
*/
void mpptCharge(void)
{
mppt_readJust();
}
/**
@ -154,8 +540,7 @@ void mpptCharge(void)
*/
void constantVoltageCharge(void)
{
mppt_constantVoltageO(g_cfgParameter.constantVoltageChargeV);
}
/**
@ -166,7 +551,7 @@ void constantVoltageCharge(void)
*/
void floatCharge(void)
{
mppt_constantVoltageO(g_cfgParameter.FloatV);
}
/**

View File

@ -18,7 +18,9 @@ void tim_Init(void)
PWM_RESOLUTION = HAL_RCC_GetHCLKFreq() / 100000;
HD_controlTim_Init();
HD_taskBaseTim_Init();
HD_checkAbnormalTim_Init();
HD_time_Init();
@ -34,11 +36,12 @@ void pwm_Stop(void)
{
// 设置PWM脉冲宽度为0 effectively停止PWM信号输出
set_pwmPulse(0);
HAL_TIM_Base_Stop_IT(&htim15);
// HAL_TIM_OC_MspDeInit(&htim3);
// 调用HAL库函数进行PWM相关的硬件资源De初始化
HAL_TIM_PWM_MspDeInit(&htim3);
// HAL_TIM_PWM_MspDeInit(&htim3);
}
/**