gateway/Peripheral/src/ch32v30x_can.c

1219 lines
35 KiB
C

/********************************** (C) COPYRIGHT *******************************
* File Name : ch32v30x_can.c
* Author : WCH
* Version : V1.0.0
* Date : 2021/06/06
* Description : This file provides all the CAN firmware functions.
*********************************************************************************
* Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd.
* Attention: This software (modified or not) and binary are used for
* microcontroller manufactured by Nanjing Qinheng Microelectronics.
*******************************************************************************/
#include "ch32v30x_can.h"
#include "ch32v30x_rcc.h"
/* CAN CTLR Register bits */
#define CTLR_DBF ((uint32_t)0x00010000)
/* CAN Mailbox Transmit Request */
#define TMIDxR_TXRQ ((uint32_t)0x00000001)
/* CAN FCTLR Register bits */
#define FCTLR_FINIT ((uint32_t)0x00000001)
/* Time out for INAK bit */
#define INAK_TIMEOUT ((uint32_t)0x0000FFFF)
/* Time out for SLAK bit */
#define SLAK_TIMEOUT ((uint32_t)0x0000FFFF)
/* Flags in TSTATR register */
#define CAN_FLAGS_TSTATR ((uint32_t)0x08000000)
/* Flags in RFIFO1 register */
#define CAN_FLAGS_RFIFO1 ((uint32_t)0x04000000)
/* Flags in RFIFO0 register */
#define CAN_FLAGS_RFIFO0 ((uint32_t)0x02000000)
/* Flags in STATR register */
#define CAN_FLAGS_STATR ((uint32_t)0x01000000)
/* Flags in ERRSR register */
#define CAN_FLAGS_ERRSR ((uint32_t)0x00F00000)
/* Mailboxes definition */
#define CAN_TXMAILBOX_0 ((uint8_t)0x00)
#define CAN_TXMAILBOX_1 ((uint8_t)0x01)
#define CAN_TXMAILBOX_2 ((uint8_t)0x02)
#define CAN_MODE_MASK ((uint32_t)0x00000003)
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
/*********************************************************************
* @fn CAN_DeInit
*
* @brief Deinitializes the CAN peripheral registers to their default reset
* values.
*
* @param CANx - where x can be 1 or 2 to select the CAN peripheral.
*
* @return none
*/
void CAN_DeInit(CAN_TypeDef *CANx)
{
if(CANx == CAN1)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
}
else
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
}
}
/*********************************************************************
* @fn CAN_Init
*
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_InitStruct - pointer to a CAN_InitTypeDef structure that
* contains the configuration information for the CAN peripheral.
*
* @return InitStatus - CAN InitStatus state.
* CAN_InitStatus_Failed.
* CAN_InitStatus_Success.
*/
uint8_t CAN_Init(CAN_TypeDef *CANx, CAN_InitTypeDef *CAN_InitStruct)
{
uint8_t InitStatus = CAN_InitStatus_Failed;
uint32_t wait_ack = 0x00000000;
CANx->CTLR &= (~(uint32_t)CAN_CTLR_SLEEP);
CANx->CTLR |= CAN_CTLR_INRQ;
while(((CANx->STATR & CAN_STATR_INAK) != CAN_STATR_INAK) && (wait_ack != INAK_TIMEOUT))
{
wait_ack++;
}
if((CANx->STATR & CAN_STATR_INAK) != CAN_STATR_INAK)
{
InitStatus = CAN_InitStatus_Failed;
}
else
{
if(CAN_InitStruct->CAN_TTCM == ENABLE)
{
CANx->CTLR |= CAN_CTLR_TTCM;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_TTCM;
}
if(CAN_InitStruct->CAN_ABOM == ENABLE)
{
CANx->CTLR |= CAN_CTLR_ABOM;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_ABOM;
}
if(CAN_InitStruct->CAN_AWUM == ENABLE)
{
CANx->CTLR |= CAN_CTLR_AWUM;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_AWUM;
}
if(CAN_InitStruct->CAN_NART == ENABLE)
{
CANx->CTLR |= CAN_CTLR_NART;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_NART;
}
if(CAN_InitStruct->CAN_RFLM == ENABLE)
{
CANx->CTLR |= CAN_CTLR_RFLM;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_RFLM;
}
if(CAN_InitStruct->CAN_TXFP == ENABLE)
{
CANx->CTLR |= CAN_CTLR_TXFP;
}
else
{
CANx->CTLR &= ~(uint32_t)CAN_CTLR_TXFP;
}
CANx->BTIMR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) |
((uint32_t)CAN_InitStruct->CAN_SJW << 24) |
((uint32_t)CAN_InitStruct->CAN_BS1 << 16) |
((uint32_t)CAN_InitStruct->CAN_BS2 << 20) |
((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
CANx->CTLR &= ~(uint32_t)CAN_CTLR_INRQ;
wait_ack = 0;
while(((CANx->STATR & CAN_STATR_INAK) == CAN_STATR_INAK) && (wait_ack != INAK_TIMEOUT))
{
wait_ack++;
}
if((CANx->STATR & CAN_STATR_INAK) == CAN_STATR_INAK)
{
InitStatus = CAN_InitStatus_Failed;
}
else
{
InitStatus = CAN_InitStatus_Success;
}
}
return InitStatus;
}
/*********************************************************************
* @fn CAN_FilterInit
*
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_FilterInitStruct.
*
* @param CAN_FilterInitStruct - pointer to a CAN_FilterInitTypeDef
* structure that contains the configuration information.
*
* @return none
*/
void CAN_FilterInit(CAN_FilterInitTypeDef *CAN_FilterInitStruct)
{
uint32_t filter_number_bit_pos = 0;
filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;
CAN1->FCTLR |= FCTLR_FINIT;
CAN1->FWR &= ~(uint32_t)filter_number_bit_pos;
if(CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
{
CAN1->FSCFGR &= ~(uint32_t)filter_number_bit_pos;
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
}
if(CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
{
CAN1->FSCFGR |= filter_number_bit_pos;
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
}
if(CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
{
CAN1->FMCFGR &= ~(uint32_t)filter_number_bit_pos;
}
else
{
CAN1->FMCFGR |= (uint32_t)filter_number_bit_pos;
}
if(CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
{
CAN1->FAFIFOR &= ~(uint32_t)filter_number_bit_pos;
}
if(CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
{
CAN1->FAFIFOR |= (uint32_t)filter_number_bit_pos;
}
if(CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
{
CAN1->FWR |= filter_number_bit_pos;
}
CAN1->FCTLR &= ~FCTLR_FINIT;
}
/*********************************************************************
* @fn CAN_StructInit
*
* @brief Fills each CAN_InitStruct member with its default value.
*
* @param CAN_InitStruct - pointer to a CAN_InitTypeDef structure which
* will be initialized.
*
* @return none
*/
void CAN_StructInit(CAN_InitTypeDef *CAN_InitStruct)
{
CAN_InitStruct->CAN_TTCM = DISABLE;
CAN_InitStruct->CAN_ABOM = DISABLE;
CAN_InitStruct->CAN_AWUM = DISABLE;
CAN_InitStruct->CAN_NART = DISABLE;
CAN_InitStruct->CAN_RFLM = DISABLE;
CAN_InitStruct->CAN_TXFP = DISABLE;
CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
CAN_InitStruct->CAN_Prescaler = 1;
}
/*********************************************************************
* @fn CAN_SlaveStartBank
*
* @brief This function applies only to CH32 Connectivity line devices.
*
* @param CAN_BankNumber - Select the start slave bank filter from 1..27.
*
* @return none
*/
void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
{
CAN1->FCTLR |= FCTLR_FINIT;
CAN1->FCTLR &= (uint32_t)0xFFFFC0F1;
CAN1->FCTLR |= (uint32_t)(CAN_BankNumber) << 8;
CAN1->FCTLR &= ~FCTLR_FINIT;
}
/*********************************************************************
* @fn CAN_DBGFreeze
*
* @brief Enables or disables the DBG Freeze for CAN.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* NewState - ENABLE or DISABLE.
*
* @return none
*/
void CAN_DBGFreeze(CAN_TypeDef *CANx, FunctionalState NewState)
{
if(NewState != DISABLE)
{
CANx->CTLR |= CTLR_DBF;
}
else
{
CANx->CTLR &= ~CTLR_DBF;
}
}
/*********************************************************************
* @fn CAN_TTComModeCmd
*
* @brief Enables or disabes the CAN Time TriggerOperation communication mode.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* NewState - ENABLE or DISABLE.
* Note-
* DLC must be programmed as 8 in order Time Stamp (2 bytes) to be
* sent over the CAN bus.
*
* @return none
*/
void CAN_TTComModeCmd(CAN_TypeDef *CANx, FunctionalState NewState)
{
if(NewState != DISABLE)
{
CANx->CTLR |= CAN_CTLR_TTCM;
CANx->sTxMailBox[0].TXMDTR |= ((uint32_t)CAN_TXMDT0R_TGT);
CANx->sTxMailBox[1].TXMDTR |= ((uint32_t)CAN_TXMDT1R_TGT);
CANx->sTxMailBox[2].TXMDTR |= ((uint32_t)CAN_TXMDT2R_TGT);
}
else
{
CANx->CTLR &= (uint32_t)(~(uint32_t)CAN_CTLR_TTCM);
CANx->sTxMailBox[0].TXMDTR &= ((uint32_t)~CAN_TXMDT0R_TGT);
CANx->sTxMailBox[1].TXMDTR &= ((uint32_t)~CAN_TXMDT1R_TGT);
CANx->sTxMailBox[2].TXMDTR &= ((uint32_t)~CAN_TXMDT2R_TGT);
}
}
/*********************************************************************
* @fn CAN_Transmit
*
* @brief Initiates the transmission of a message.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* TxMessage - pointer to a structure which contains CAN Id, CAN
* DLC and CAN data.
*
* @return transmit_mailbox - The number of the mailbox that is used for
* transmission or CAN_TxStatus_NoMailBox if there is no empty mailbox.
*/
uint8_t CAN_Transmit(CAN_TypeDef *CANx, CanTxMsg *TxMessage)
{
uint8_t transmit_mailbox = 0;
if((CANx->TSTATR & CAN_TSTATR_TME0) == CAN_TSTATR_TME0)
{
transmit_mailbox = 0;
}
else if((CANx->TSTATR & CAN_TSTATR_TME1) == CAN_TSTATR_TME1)
{
transmit_mailbox = 1;
}
else if((CANx->TSTATR & CAN_TSTATR_TME2) == CAN_TSTATR_TME2)
{
transmit_mailbox = 2;
}
else
{
transmit_mailbox = CAN_TxStatus_NoMailBox;
}
if(transmit_mailbox != CAN_TxStatus_NoMailBox)
{
CANx->sTxMailBox[transmit_mailbox].TXMIR &= TMIDxR_TXRQ;
if(TxMessage->IDE == CAN_Id_Standard)
{
CANx->sTxMailBox[transmit_mailbox].TXMIR |= ((TxMessage->StdId << 21) |
TxMessage->RTR);
}
else
{
CANx->sTxMailBox[transmit_mailbox].TXMIR |= ((TxMessage->ExtId << 3) |
TxMessage->IDE |
TxMessage->RTR);
}
TxMessage->DLC &= (uint8_t)0x0000000F;
CANx->sTxMailBox[transmit_mailbox].TXMDTR &= (uint32_t)0xFFFFFFF0;
CANx->sTxMailBox[transmit_mailbox].TXMDTR |= TxMessage->DLC;
CANx->sTxMailBox[transmit_mailbox].TXMDLR = (((uint32_t)TxMessage->Data[3] << 24) |
((uint32_t)TxMessage->Data[2] << 16) |
((uint32_t)TxMessage->Data[1] << 8) |
((uint32_t)TxMessage->Data[0]));
CANx->sTxMailBox[transmit_mailbox].TXMDHR = (((uint32_t)TxMessage->Data[7] << 24) |
((uint32_t)TxMessage->Data[6] << 16) |
((uint32_t)TxMessage->Data[5] << 8) |
((uint32_t)TxMessage->Data[4]));
CANx->sTxMailBox[transmit_mailbox].TXMIR |= TMIDxR_TXRQ;
}
return transmit_mailbox;
}
/*********************************************************************
* @fn CAN_TransmitStatus
*
* @brief Checks the transmission of a message.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* TransmitMailbox - the number of the mailbox that is used for
* transmission.
*
* @return state -
* CAN_TxStatus_Ok.
* CAN_TxStatus_Failed.
*/
uint8_t CAN_TransmitStatus(CAN_TypeDef *CANx, uint8_t TransmitMailbox)
{
uint32_t state = 0;
switch(TransmitMailbox)
{
case(CAN_TXMAILBOX_0):
state = CANx->TSTATR & (CAN_TSTATR_RQCP0 | CAN_TSTATR_TXOK0 | CAN_TSTATR_TME0);
break;
case(CAN_TXMAILBOX_1):
state = CANx->TSTATR & (CAN_TSTATR_RQCP1 | CAN_TSTATR_TXOK1 | CAN_TSTATR_TME1);
break;
case(CAN_TXMAILBOX_2):
state = CANx->TSTATR & (CAN_TSTATR_RQCP2 | CAN_TSTATR_TXOK2 | CAN_TSTATR_TME2);
break;
default:
state = CAN_TxStatus_Failed;
break;
}
switch(state)
{
case(0x0):
state = CAN_TxStatus_Pending;
break;
case(CAN_TSTATR_RQCP0 | CAN_TSTATR_TME0):
state = CAN_TxStatus_Failed;
break;
case(CAN_TSTATR_RQCP1 | CAN_TSTATR_TME1):
state = CAN_TxStatus_Failed;
break;
case(CAN_TSTATR_RQCP2 | CAN_TSTATR_TME2):
state = CAN_TxStatus_Failed;
break;
case(CAN_TSTATR_RQCP0 | CAN_TSTATR_TXOK0 | CAN_TSTATR_TME0):
state = CAN_TxStatus_Ok;
break;
case(CAN_TSTATR_RQCP1 | CAN_TSTATR_TXOK1 | CAN_TSTATR_TME1):
state = CAN_TxStatus_Ok;
break;
case(CAN_TSTATR_RQCP2 | CAN_TSTATR_TXOK2 | CAN_TSTATR_TME2):
state = CAN_TxStatus_Ok;
break;
default:
state = CAN_TxStatus_Failed;
break;
}
return (uint8_t)state;
}
/*********************************************************************
* @fn CAN_CancelTransmit
*
* @brief Cancels a transmit request.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* Mailbox - Mailbox number.
* CAN_TXMAILBOX_0.
* CAN_TXMAILBOX_1.
* CAN_TXMAILBOX_2.
*
* @return none
*/
void CAN_CancelTransmit(CAN_TypeDef *CANx, uint8_t Mailbox)
{
switch(Mailbox)
{
case(CAN_TXMAILBOX_0):
CANx->TSTATR |= CAN_TSTATR_ABRQ0;
break;
case(CAN_TXMAILBOX_1):
CANx->TSTATR |= CAN_TSTATR_ABRQ1;
break;
case(CAN_TXMAILBOX_2):
CANx->TSTATR |= CAN_TSTATR_ABRQ2;
break;
default:
break;
}
}
/*********************************************************************
* @fn CAN_Receive
*
* @brief Receives a message.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* FIFONumber - Receive FIFO number.
* CAN_FIFO0.
* CAN_FIFO1.
* RxMessage - pointer to a structure receive message which contains
* CAN Id, CAN DLC, CAN datas and FMI number.
*
* @return none
*/
void CAN_Receive(CAN_TypeDef *CANx, uint8_t FIFONumber, CanRxMsg *RxMessage)
{
RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RXMIR;
if(RxMessage->IDE == CAN_Id_Standard)
{
RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RXMIR >> 21);
}
else
{
RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RXMIR >> 3);
}
RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RXMIR;
RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RXMDTR;
RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDTR >> 8);
RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RXMDLR;
RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDLR >> 8);
RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDLR >> 16);
RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDLR >> 24);
RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RXMDHR;
RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDHR >> 8);
RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDHR >> 16);
RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RXMDHR >> 24);
if(FIFONumber == CAN_FIFO0)
{
CANx->RFIFO0 |= CAN_RFIFO0_RFOM0;
}
else
{
CANx->RFIFO1 |= CAN_RFIFO1_RFOM1;
}
}
/*********************************************************************
* @fn CAN_FIFORelease
*
* @brief Releases the specified FIFO.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* FIFONumber - Receive FIFO number.
* CAN_FIFO0.
* CAN_FIFO1.
*
* @return none
*/
void CAN_FIFORelease(CAN_TypeDef *CANx, uint8_t FIFONumber)
{
if(FIFONumber == CAN_FIFO0)
{
CANx->RFIFO0 |= CAN_RFIFO0_RFOM0;
}
else
{
CANx->RFIFO1 |= CAN_RFIFO1_RFOM1;
}
}
/*********************************************************************
* @fn CAN_MessagePending
*
* @brief Returns the number of pending messages.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* FIFONumber - Receive FIFO number.
* CAN_FIFO0.
* CAN_FIFO1.
*
* @return message_pending: which is the number of pending message.
*/
uint8_t CAN_MessagePending(CAN_TypeDef *CANx, uint8_t FIFONumber)
{
uint8_t message_pending = 0;
if(FIFONumber == CAN_FIFO0)
{
message_pending = (uint8_t)(CANx->RFIFO0 & (uint32_t)0x03);
}
else if(FIFONumber == CAN_FIFO1)
{
message_pending = (uint8_t)(CANx->RFIFO1 & (uint32_t)0x03);
}
else
{
message_pending = 0;
}
return message_pending;
}
/*********************************************************************
* @fn CAN_OperatingModeRequest
*
* @brief Select the CAN Operation mode.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_OperatingMode - CAN Operating Mode.
* CAN_OperatingMode_Initialization.
* CAN_OperatingMode_Normal.
* CAN_OperatingMode_Sleep.
*
* @return status -
* CAN_ModeStatus_Failed - CAN failed entering the specific mode.
* CAN_ModeStatus_Success - CAN Succeed entering the specific mode.
*/
uint8_t CAN_OperatingModeRequest(CAN_TypeDef *CANx, uint8_t CAN_OperatingMode)
{
uint8_t status = CAN_ModeStatus_Failed;
uint32_t timeout = INAK_TIMEOUT;
if(CAN_OperatingMode == CAN_OperatingMode_Initialization)
{
CANx->CTLR = (uint32_t)((CANx->CTLR & (uint32_t)(~(uint32_t)CAN_CTLR_SLEEP)) | CAN_CTLR_INRQ);
while(((CANx->STATR & CAN_MODE_MASK) != CAN_STATR_INAK) && (timeout != 0))
{
timeout--;
}
if((CANx->STATR & CAN_MODE_MASK) != CAN_STATR_INAK)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else if(CAN_OperatingMode == CAN_OperatingMode_Normal)
{
CANx->CTLR &= (uint32_t)(~(CAN_CTLR_SLEEP | CAN_CTLR_INRQ));
while(((CANx->STATR & CAN_MODE_MASK) != 0) && (timeout != 0))
{
timeout--;
}
if((CANx->STATR & CAN_MODE_MASK) != 0)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else if(CAN_OperatingMode == CAN_OperatingMode_Sleep)
{
CANx->CTLR = (uint32_t)((CANx->CTLR & (uint32_t)(~(uint32_t)CAN_CTLR_INRQ)) | CAN_CTLR_SLEEP);
while(((CANx->STATR & CAN_MODE_MASK) != CAN_STATR_SLAK) && (timeout != 0))
{
timeout--;
}
if((CANx->STATR & CAN_MODE_MASK) != CAN_STATR_SLAK)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else
{
status = CAN_ModeStatus_Failed;
}
return (uint8_t)status;
}
/*********************************************************************
* @fn CAN_Sleep
*
* @brief Enters the low power mode.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
*
* @return sleepstatus -
* CAN_Sleep_Ok.
* CAN_Sleep_Failed.
*/
uint8_t CAN_Sleep(CAN_TypeDef *CANx)
{
uint8_t sleepstatus = CAN_Sleep_Failed;
CANx->CTLR = (((CANx->CTLR) & (uint32_t)(~(uint32_t)CAN_CTLR_INRQ)) | CAN_CTLR_SLEEP);
if((CANx->STATR & (CAN_STATR_SLAK | CAN_STATR_INAK)) == CAN_STATR_SLAK)
{
sleepstatus = CAN_Sleep_Ok;
}
return (uint8_t)sleepstatus;
}
/*********************************************************************
* @fn CAN_WakeUp
*
* @brief Wakes the CAN up.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
*
* @return wakeupstatus -
* CAN_WakeUp_Ok.
* CAN_WakeUp_Failed.
*/
uint8_t CAN_WakeUp(CAN_TypeDef *CANx)
{
uint32_t wait_slak = SLAK_TIMEOUT;
uint8_t wakeupstatus = CAN_WakeUp_Failed;
CANx->CTLR &= ~(uint32_t)CAN_CTLR_SLEEP;
while(((CANx->STATR & CAN_STATR_SLAK) == CAN_STATR_SLAK) && (wait_slak != 0x00))
{
wait_slak--;
}
if((CANx->STATR & CAN_STATR_SLAK) != CAN_STATR_SLAK)
{
wakeupstatus = CAN_WakeUp_Ok;
}
return (uint8_t)wakeupstatus;
}
/*********************************************************************
* @fn CAN_GetLastErrorCode
*
* @brief Returns the CANx's last error code (LEC).
*
* @param CANx - where x can be 1 to select the CAN peripheral.
*
* @return errorcode - specifies the Error code.
* CAN_ErrorCode_NoErr - No Error.
* CAN_ErrorCode_StuffErr - Stuff Error.
* CAN_ErrorCode_FormErr - Form Error.
* CAN_ErrorCode_ACKErr - Acknowledgment Error.
* CAN_ErrorCode_BitRecessiveErr - Bit Recessive Error.
* CAN_ErrorCode_BitDominantErr - Bit Dominant Error.
* CAN_ErrorCode_CRCErr - CRC Error.
* CAN_ErrorCode_SoftwareSetErr - Software Set Error.
*/
uint8_t CAN_GetLastErrorCode(CAN_TypeDef *CANx)
{
uint8_t errorcode = 0;
errorcode = (((uint8_t)CANx->ERRSR) & (uint8_t)CAN_ERRSR_LEC);
return errorcode;
}
/*********************************************************************
* @fn CAN_GetReceiveErrorCounter
*
* @brief Returns the CANx Receive Error Counter (REC).
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* Note-
* In case of an error during reception, this counter is incremented
* by 1 or by 8 depending on the error condition as defined by the CAN
* standard. After every successful reception, the counter is
* decremented by 1 or reset to 120 if its value was higher than 128.
* When the counter value exceeds 127, the CAN controller enters the
* error passive state.
* @return counter - CAN Receive Error Counter.
*/
uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef *CANx)
{
uint8_t counter = 0;
counter = (uint8_t)((CANx->ERRSR & CAN_ERRSR_REC) >> 24);
return counter;
}
/*********************************************************************
* @fn CAN_GetLSBTransmitErrorCounter
*
* @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
*
* @param CANx - where x can be 1 to select the CAN peripheral.
*
* @return counter - LSB of the 9-bit CAN Transmit Error Counter.
*/
uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef *CANx)
{
uint8_t counter = 0;
counter = (uint8_t)((CANx->ERRSR & CAN_ERRSR_TEC) >> 16);
return counter;
}
/*********************************************************************
* @fn CAN_ITConfig
*
* @brief Enables or disables the specified CANx interrupts.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_IT - specifies the CAN interrupt sources to be enabled or disabled.
* CAN_IT_TME.
* CAN_IT_FMP0.
* CAN_IT_FF0.
* CAN_IT_FOV0.
* CAN_IT_FMP1.
* CAN_IT_FF1.
* CAN_IT_FOV1.
* CAN_IT_EWG.
* CAN_IT_EPV.
* CAN_IT_LEC.
* CAN_IT_ERR.
* CAN_IT_WKU.
* CAN_IT_SLK.
* NewState - ENABLE or DISABLE.
*
* @return counter - LSB of the 9-bit CAN Transmit Error Counter.
*/
void CAN_ITConfig(CAN_TypeDef *CANx, uint32_t CAN_IT, FunctionalState NewState)
{
if(NewState != DISABLE)
{
CANx->INTENR |= CAN_IT;
}
else
{
CANx->INTENR &= ~CAN_IT;
}
}
/*********************************************************************
* @fn CAN_GetFlagStatus
*
* @brief Checks whether the specified CAN flag is set or not.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_FLAG - specifies the flag to check.
* CAN_FLAG_EWG.
* CAN_FLAG_EPV.
* CAN_FLAG_BOF.
* CAN_FLAG_RQCP0.
* CAN_FLAG_RQCP1.
* CAN_FLAG_RQCP2.
* CAN_FLAG_FMP1.
* CAN_FLAG_FF1.
* CAN_FLAG_FOV1.
* CAN_FLAG_FMP0.
* CAN_FLAG_FF0.
* CAN_FLAG_FOV0.
* CAN_FLAG_WKU.
* CAN_FLAG_SLAK.
* CAN_FLAG_LEC.
* NewState - ENABLE or DISABLE.
*
* @return FlagStatus - SET or RESET.
*/
FlagStatus CAN_GetFlagStatus(CAN_TypeDef *CANx, uint32_t CAN_FLAG)
{
FlagStatus bitstatus = RESET;
if((CAN_FLAG & CAN_FLAGS_ERRSR) != (uint32_t)RESET)
{
if((CANx->ERRSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_STATR) != (uint32_t)RESET)
{
if((CANx->STATR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_TSTATR) != (uint32_t)RESET)
{
if((CANx->TSTATR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_RFIFO0) != (uint32_t)RESET)
{
if((CANx->RFIFO0 & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
else
{
if((uint32_t)(CANx->RFIFO1 & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
}
return bitstatus;
}
/*********************************************************************
* @fn CAN_ClearFlag
*
* @brief Clears the CAN's pending flags.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_FLAG - specifies the flag to clear.
* CAN_FLAG_RQCP0.
* CAN_FLAG_RQCP1.
* CAN_FLAG_RQCP2.
* CAN_FLAG_FF1.
* CAN_FLAG_FOV1.
* CAN_FLAG_FF0.
* CAN_FLAG_FOV0.
* CAN_FLAG_WKU.
* CAN_FLAG_SLAK.
* CAN_FLAG_LEC.
*
* @return none
*/
void CAN_ClearFlag(CAN_TypeDef *CANx, uint32_t CAN_FLAG)
{
uint32_t flagtmp = 0;
if(CAN_FLAG == CAN_FLAG_LEC)
{
CANx->ERRSR = (uint32_t)RESET;
}
else
{
flagtmp = CAN_FLAG & 0x000FFFFF;
if((CAN_FLAG & CAN_FLAGS_RFIFO0) != (uint32_t)RESET)
{
CANx->RFIFO0 = (uint32_t)(flagtmp);
}
else if((CAN_FLAG & CAN_FLAGS_RFIFO1) != (uint32_t)RESET)
{
CANx->RFIFO1 = (uint32_t)(flagtmp);
}
else if((CAN_FLAG & CAN_FLAGS_TSTATR) != (uint32_t)RESET)
{
CANx->TSTATR = (uint32_t)(flagtmp);
}
else
{
CANx->STATR = (uint32_t)(flagtmp);
}
}
}
/*********************************************************************
* @fn CAN_GetITStatus
*
* @brief Checks whether the specified CANx interrupt has occurred or not.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_IT - specifies the CAN interrupt source to check.
* CAN_IT_TME.
* CAN_IT_FMP0.
* CAN_IT_FF0.
* CAN_IT_FOV0.
* CAN_IT_FMP1.
* CAN_IT_FF1.
* CAN_IT_FOV1.
* CAN_IT_WKU.
* CAN_IT_SLK.
* CAN_IT_EWG.
* CAN_IT_EPV.
* CAN_IT_BOF.
* CAN_IT_LEC.
* CAN_IT_ERR.
*
* @return ITStatus - SET or RESET.
*/
ITStatus CAN_GetITStatus(CAN_TypeDef *CANx, uint32_t CAN_IT)
{
ITStatus itstatus = RESET;
if((CANx->INTENR & CAN_IT) != RESET)
{
switch(CAN_IT)
{
case CAN_IT_TME:
itstatus = CheckITStatus(CANx->TSTATR, CAN_TSTATR_RQCP0 | CAN_TSTATR_RQCP1 | CAN_TSTATR_RQCP2);
break;
case CAN_IT_FMP0:
itstatus = CheckITStatus(CANx->RFIFO0, CAN_RFIFO0_FMP0);
break;
case CAN_IT_FF0:
itstatus = CheckITStatus(CANx->RFIFO0, CAN_RFIFO0_FULL0);
break;
case CAN_IT_FOV0:
itstatus = CheckITStatus(CANx->RFIFO0, CAN_RFIFO0_FOVR0);
break;
case CAN_IT_FMP1:
itstatus = CheckITStatus(CANx->RFIFO1, CAN_RFIFO1_FMP1);
break;
case CAN_IT_FF1:
itstatus = CheckITStatus(CANx->RFIFO1, CAN_RFIFO1_FULL1);
break;
case CAN_IT_FOV1:
itstatus = CheckITStatus(CANx->RFIFO1, CAN_RFIFO1_FOVR1);
break;
case CAN_IT_WKU:
itstatus = CheckITStatus(CANx->STATR, CAN_STATR_WKUI);
break;
case CAN_IT_SLK:
itstatus = CheckITStatus(CANx->STATR, CAN_STATR_SLAKI);
break;
case CAN_IT_EWG:
itstatus = CheckITStatus(CANx->ERRSR, CAN_ERRSR_EWGF);
break;
case CAN_IT_EPV:
itstatus = CheckITStatus(CANx->ERRSR, CAN_ERRSR_EPVF);
break;
case CAN_IT_BOF:
itstatus = CheckITStatus(CANx->ERRSR, CAN_ERRSR_BOFF);
break;
case CAN_IT_LEC:
itstatus = CheckITStatus(CANx->ERRSR, CAN_ERRSR_LEC);
break;
case CAN_IT_ERR:
itstatus = CheckITStatus(CANx->STATR, CAN_STATR_ERRI);
break;
default:
itstatus = RESET;
break;
}
}
else
{
itstatus = RESET;
}
return itstatus;
}
/*********************************************************************
* @fn CAN_ClearITPendingBit
*
* @brief Clears the CANx's interrupt pending bits.
*
* @param CANx - where x can be 1 to select the CAN peripheral.
* CAN_IT - specifies the interrupt pending bit to clear.
* CAN_IT_TME.
* CAN_IT_FF0.
* CAN_IT_FOV0.
* CAN_IT_FF1.
* CAN_IT_FOV1.
* CAN_IT_WKU.
* CAN_IT_SLK.
* CAN_IT_EWG.
* CAN_IT_EPV.
* CAN_IT_BOF.
* CAN_IT_LEC.
* CAN_IT_ERR.
*
* @return none
*/
void CAN_ClearITPendingBit(CAN_TypeDef *CANx, uint32_t CAN_IT)
{
switch(CAN_IT)
{
case CAN_IT_TME:
CANx->TSTATR = CAN_TSTATR_RQCP0 | CAN_TSTATR_RQCP1 | CAN_TSTATR_RQCP2;
break;
case CAN_IT_FF0:
CANx->RFIFO0 = CAN_RFIFO0_FULL0;
break;
case CAN_IT_FOV0:
CANx->RFIFO0 = CAN_RFIFO0_FOVR0;
break;
case CAN_IT_FF1:
CANx->RFIFO1 = CAN_RFIFO1_FULL1;
break;
case CAN_IT_FOV1:
CANx->RFIFO1 = CAN_RFIFO1_FOVR1;
break;
case CAN_IT_WKU:
CANx->STATR = CAN_STATR_WKUI;
break;
case CAN_IT_SLK:
CANx->STATR = CAN_STATR_SLAKI;
break;
case CAN_IT_EWG:
CANx->STATR = CAN_STATR_ERRI;
break;
case CAN_IT_EPV:
CANx->STATR = CAN_STATR_ERRI;
break;
case CAN_IT_BOF:
CANx->STATR = CAN_STATR_ERRI;
break;
case CAN_IT_LEC:
CANx->ERRSR = RESET;
CANx->STATR = CAN_STATR_ERRI;
break;
case CAN_IT_ERR:
CANx->ERRSR = RESET;
CANx->STATR = CAN_STATR_ERRI;
break;
default:
break;
}
}
/*********************************************************************
* @fn CheckITStatus
*
* @brief Checks whether the CAN interrupt has occurred or not.
*
* @param CAN_Reg - specifies the CAN interrupt register to check
* It_Bit - specifies the interrupt source bit to check.
*
* @return ITStatus - SET or RESET.
*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
{
ITStatus pendingbitstatus = RESET;
if((CAN_Reg & It_Bit) != (uint32_t)RESET)
{
pendingbitstatus = SET;
}
else
{
pendingbitstatus = RESET;
}
return pendingbitstatus;
}